ETC2.0を活用した最新の研究開発 動向と今後の方向性

道路交通研究部長 岡 邦彦

(キーワード) ETC2.0、プローブ情報、科学的交通分析

1. はじめに

近年、我が国では、少子高齢化、気候変動による 災害リスクの増大、あるいは国際競争の激化など、 社会経済を取り巻く情勢は厳しさを増している。特 に、2010年の1億2800万人をピークにして 人口減少が始まり、しかも極めて速いスピードで人 口の減少と高齢化が進んでいる。これにより、経済 を支えている労働力が急激に減少するため、従来の 経済成長を継続するためには、道路渋滞を解消する など社会の無駄を減らし、生産性を向上させること が不可欠である。

そのためには、道路のネットワークを整備するこ とによるハード対策に加え、道路を賢く利用するた めのソフト対策が重要である。特に、構造的な渋滞 要因をデータで特定し、ピンポイントで効率的な渋 滞対策を行うことや、既存の道路ネットワークを活 用し、利用重視の賢い料金体系を導入することで渋 滞緩和を図り、道路の利用効率を向上させることが 必要である。また、潜在的な急所をデータを活用し て事前に特定することで、事故を科学的に防ぐ対策 を全国的に展開することが必要である。 そこで、現在、急速に発達しているICTの新技術を 活用して、効率的かつ効果的に道路を利活用する施 策のために、国総研が積極的取り組んでいる最新の 取組を紹介する。

2. ETC2. 0を活用した道路交通調査

効率的な渋滞対策や効果的な交通安全対策を実施 するためには、まずは、道路交通の現状を適確に把 握することが不可欠である。

これまで、道路の交通量調査は、5年に一度の道 路交通センサス調査、あるいはトラカンによる交通 観測調査による定点観測が主流だった。ところが、 ETC2.0では、個々の車両のデータを移動点で 常時観測できることから、交通の実態を直接かつ正 確に把握できる。これにより、正確な道路交通分析 と適確な利用者サービスの提供の両面において飛躍 的な進展が期待できる。

ETC2.0を活用した交通調査は、従来のトラ カンや民間プローブによる調査と比べて、次の特徴 を有している。

	トラフィックカウンタ	民間ブローブ	ETC2.0プローブ情報	
取得概要	トラフィックカウンタ設置地点の速度	測位された位置情報から算出した区間速度	測位された位置の 地点速度 および 位置情報から算出した <mark>区間速度</mark>	
取得速度	地点速度	区間速度	地点速度、区間速度	
区間単位	トラフィックカウンタ設置地点	DRM区間単位	任意に設定可能(基本:DRM区間単位)	
集計単位	5分又は1時間	15分	任意に設定可能(基本:15分)	
即時性	速報値は当日、確定値は約1カ月後から分析可能	約1.5カ月後から分析可能	速報値は翌日、確定値は1カ月後から分析可能	
対象範囲	設置点:約1,000箇所	全国	全国(高速道路、直轄国道が中心)	
イメージ	速度(km/h)A 実際の走行速度 (地点速		──○ ETC2.0プローブ情報(区間速度) 氏間ブローブ(区間速度)	

図1 調査手法の特徴の比較

特徴①:任意の地点の走行速度の把握が可能

(トラカンは定められた定点のデータ、民

間プローブは区間の平均旅行速度)

特徴②:任意の時刻の瞬間値の把握が可能

(道路交通センサスは5年に1日の平均、

トラカンは5分間又は1時間の平均、民間

プローブは一定区間の通過時間平均)

特徵③:即時性

(トラカンは翌月末、民間プローブは翌月 末、ETC2.0は翌日)

3. ETC2. 0を活用した調査分析

ETC2.0を搭載した車両からは、200mピ ッチで、車両の座標位置と速度に関するデータが得 られる。そこで、それらのデータを、空間的かつ時 間的に重ね合わせることにより、あたかも連続して 測定しているように把握することができる。

そして、その連続したデータを分析することによ り、交通の現状を詳細に把握することができる。具 体的な分析事例としては、以下の通りである。

【分析事例】

- 渋滞実態調査の高度化・効率化
- ② 生活道路の交通状況把握手法の開発
- ③ 筑波山地域の観光交通分析

④ 環状高速道路の交通状態把握手法の開発

なお、個々の分析事例の詳細については、個別の記 事を参照頂きたい。

4. ETC2. 0を活用した施策の可能性

ETC2.0のデータを活用することにより、渋 滞対策や交通安全対策を実施した箇所におけるPD CAを速やかに実施できることになった。

そして、国総研としてはサーバー等のデータ分析 基盤の整備により即時的な分析体制を構築するとと もに、車載器においては詳細な分析が可能な仕様改 訂が、また道路地図においては自動運転を見据えた 車線別のデータ構築が行われることにより、以下の 施策が可能になると考えられる。

リアルタイムTDMの導入

特定地域のETC2.0データをリアルタイムで 処理できるようになれば、混雑状況に応じた課金や 流入制限、あるいはレーンコントロールが可能とな る。

② 道路構造と車両挙動からの危険予知

準天頂衛星システムの整備等により位置情報の精 度を数十cmにまで向上させ、かつセンシング技術 の進展により道路構造の3次元データが簡易に取得 できれば、道路構造と車両挙動の因果関係が詳細に 把握され、危険を予知することが可能となる。

③ 車線別の交通特性を踏まえた自動運転

DRMを車線別のデータに拡張することができれ ば、車線別の走行状況の詳細把握が可能となり、最 適な自動運転を支援することが可能となる。

道路交通研究部としては、生産性向上を図るため、 渋滞解消あるいは交通安全に資する取組を引き続き 推進してまいりたい。

データ分類 データ項目	 → カーナビか ら取得度・タ 夏 デーマッ チング 	走行履歴データ	→ リンク単位 旅行時 間•旅行 速度算出	リンク単位旅行時間データ	→ 集計 処理	リンク単位 旅行時間データ集計値
データ概要		個別車両単位の 走行履歴(緯度・経度)		個別車両単位の 走行リンク別旅行時間		リンク単位の15分単位の 旅行時間(平均、分散等)
車両情報 基本情報)		あり (車種、用途 等)		あり (車種、用途 等)		_{なし} (集計値のため)
車両位置情報 (走行履歴)		緯度・経度 (100mまたは200m毎)		リンク単位 (進入・退出時刻、旅行時間)		リンク単位 (平均旅行時間、分散等)
想定される 分析用途		<mark>地点速度、 oD (起終点)</mark> の分析等		走行経路 の分析等		区間旅行時間 の分析等
		個別車両の走行履歴(点群)		個別車両の走行経路・旅行時間		リンク単位の平均旅行時間
データの イメージ		hard				Je y

図2 ETC2. 0データの特徴