目次

1. la	よじめに しんしん しんしん しんしん しんしん しんしん しんしん しんしん しん	
1.1	実施内容および木質混構造建築物のメリット	B-4
1.2	2 実施体制	B-5

2. プロトタイプ I 関連の構造設計に関する技術資料

2.1 木造階をあらわしとするRCメガストラクチャの試設計のプランと構造の概要	B-6
2.2 5 階建て庁舎プランを対象とする構造検討事例	B-8
2.2.1 はじめに	B-8
2.2.2 構造検討	B-8

3. プロトタイプⅡ関連の構造設計に関する技術資料

3.1 RC+CLT 袖壁	B-75
3.1.1 本資料の構成	B-75
3.1.2 部材実験及び架構実験の概要	B-75
3.1.3 基本方針	B-82
3.1.4 モデル化の方法	В-92
3.1.5 保有水平耐力計算を行う場合の考え方1(構造計算フロー)	B-115
3.1.6 保有水平耐力計算を行う場合の考え方2(CLT 袖壁の部材種別の判定)	B-117
3.1.7 保有水平耐力計算を行う場合の考え方3(構造特性係数の設定)	B-123
3.1.8 保有水平耐力計算を行う場合の考え方4(保証設計の考え方)	B-124
3.1.9 保有水平耐力計算を行う場合の考え方5(保証設計の具体的な方法)	B-137
3.1.10 限界耐力計算を行う場合の考え方	B-154
3.1.11 RC-CLT 間の接合方法	B-160
3.1.12 設計例	B-163
3.2 S+CLT 架構	B-228
3.2.1 構造設計	B-228

4. プロトタイプⅢ関連の構造設計に関する技術資料

4.1 CLT 柱-集成材合わせ梁モーメント抵抗接合部の設計方法に関する技術資料	B-291
4.1.1 はじめに	B-291
4.1.2 柱梁接合部の荷重変形関係の設定	B-291
4.1.3 CLT 柱-集成材合わせ梁モーメント抵抗接合部の設計における留意点	B-295
4.2 木質工法間混構造の構造設計のための技術資料	B-303
4.2.1 目的	B-303
4.2.2 評価方法	B-304
4.2.3 計算結果	B-315
4.2.4 構造計算に必要な係数	B-329
4.3 木質復興住宅の構造設計事例及び設計の留意点	B-333

4.3.1	検討概要	B-333
4.3.2	建築物概要	B-333
4.3.3	設計図書	B-334
4.3.4	構造設計上の留意点	B-337

【参考資料】※WEB版のみに掲載

- ・プロトタイプII (RC+CLT) 実験報告
- ・プロトタイプII(S+CLT)実験報告
- ・プロトタイプII(S+CLT)試設計
- ・プロトタイプⅢ試設計

1 はじめに

1.1 実施内容および木質混構造建築物のメリット

想定する3つのプロトタイプについて構造設計上の課題を抽出し、防火性能や耐久性能を考慮した 設計方法、根拠となる実験、設計事例を技術資料として2章以降に取りまとめた。

各プロトタイプの取りまとめを通して、架構形式ごとに以下の木質混構造建築物のメリットがある と考えられる。以下のメリットを活かした木質混構造建築物を設計する際に本技術資料が参照される ことを期待する。

(1)RC+CLT 壁架構

RC 壁は剛性が高い反面、すぐにひび割れが入り、小さい層間変形角で、脆性的な破壊(袖壁:端部の曲げ圧縮破壊、耐力壁:壁板のせん断破壊)が生じる。強度型と靱性型の中間的な建築物では、壁の破壊によって保有水平耐力が決まってしまうと、余裕のあるフレームの寄与分を十分に見込むことができない。

一方、RC 壁に比べ剛性は落ちるものの変形に追随でき損傷も出にくい CLT 壁を用いることで、CLT 壁が耐力を発揮する時と RC フレームが耐力を発揮する時の層間変形角を近づけることができ、合理的な構造システムを実現できる可能性がある。

(2)S+CLT 壁

鉄骨造は剛性が低いため大地震時の層間変形が大きく、非構造部材を含めた建築物としての機能維 持等の観点から層間変形を抑えたいニーズがある(非構造部材が壊れては建築としての機能は損なわ れる)。

CLTの壁でS骨組に入れる接合部仕様が一般化し、意匠的にも優れたものであれば、外周部にも入れやすく、構造的に変形を抑える方法の有力な選択肢となる。

(3)木質工法間混構造

純木造で中高層化を目指す際、低層階には高耐力の耐力壁が必要となるが、在来軸組構法やツーバ イフォー工法の耐力壁を高耐力化するよりも、CLT等の木質大版パネルを用いた耐力壁の方が容易に 高耐力化が可能である。

そのため、中高層の純木造建築物で低層階を CLT 工法、上層階を在来軸組構法やツーバイフォー工 法等で構成することは合理的な架構形式であると考えられる。

1.2 実施体制

本報告書は、国土交通省総合技術開発プロジェクト「新しい木質材料を活用した混構造建築物の設計・施工技術の開発」(平成29年度~令和3年度)の中で設置された構造分科会で検討された内容を 取りまとめたものである。構造分科会の委員構成(令和3年度版、敬称略、役職は当時)を示す。

主査

五十日	日博	京都大学生存圈研究所生存	字圈開発創成研	开究系 教授
委員				
岩田	善裕	国立研究開発法人 建築研	構造研究グル	レープ 主任研究員
佐々フ	卡直幸	一般社団法人 日本建設業	連合会	
鈴木	圭	公益財団法人日本住宅木林	オ技術センター	- 研究技術部 技術主任
諏訪E	日晴彦	国立研究開発法人 建築研	究所 国際地震	ミエ学センター 主任研究員
田尻清	青太郎	東京大学大学院工学系研究	印科建築学専巧	文 准教授
槌本	敬大	国立研究開発法人 建築研	究所 材料研究	モグループ 上席研究員
中川	貴文	京都大学生存圈研究所生存	字圈開発創成研	开究系 准教授
山辺	豊彦	一般社団法人 日本建築構	造技術者協会	
オブザー	ーバー			
榎本	浩之	一般財団法人 日本建設業	連合会	
井上	貴仁	国立研究開発法人 防災科	学技術研究所	地震減災実験研究部門(兵庫耐震工学研
		究センター)		
事務局				
長谷川	洋	国土技術政策総合研究所	建築研究部長	
秋山	信彦	国土技術政策総合研究所	建築研究部	評価システム研究室 主任研究官
阿部	一臣	国土技術政策総合研究所	建築研究部	基準認証システム研究室長
荒木	康弘	国土技術政策総合研究所	建築研究部	基準認証システム研究室 主任研究官
石原	直	国土技術政策総合研究所	建築研究部	評価システム研究室長
犬飼	瑞郎	国土技術政策総合研究所	建築研究部	建築新技術統括研究官
井上	波彦	国土技術政策総合研究所	建築研究部	建築品質研究官
岩見	達也	国土技術政策総合研究所	建築研究部	防火基準研究室長
喜々漢	聿 仁密	国土技術政策総合研究所	建築研究部	構造基準研究室長
坂下	雅信	国土技術政策総合研究所	建築研究部	基準認証システム研究室 主任研究官
鈴木	淳一	国土技術政策総合研究所	建築研究部	防火基準研究室 主任研究官
三木	徳人	国土技術政策総合研究所	建築研究部	構造基準研究室 研究官
三島	直生	国土技術政策総合研究所	建築研究部	材料・部材基準研究室長
村田	英樹	国土技術政策総合研究所	建築研究部	建築災害対策研究官

2 プロトタイプ I 関連の構造設計に関する技術資料

2.1 木造階をあらわしとするRCメガストラクチャの試設計のプランと構造の概要

図 2-1 に検討対象とする試設計のプランを示す。以下、プランや構造計画等の概要を示す。

- 両サイドの RC コア部は、各階の階高 4500mm 毎に RC の床梁を設け、剛性の高い耐力壁を 集中的に配置して、剛強なコアを形成している。
- 中央部の執務空間は、10m グリッドに RC 柱を設けた純ラーメン構造を採用している。
- 1 階、3 階、5 階の奇数階は RC 階とし、 2 階、4 階、R 階の偶数階は木造階としている。
- 木造部分の柱、梁はすべてピン接合で接合されており、木造部分の地震力は CLT 床版による 床水平構面に伝達させて、10m グリッドに配置された RC 柱の中間荷重として処理している。
- RC 柱の中間荷重となった木造階の地震力は、RC 柱を介しての上下階の RC 階に伝達され、 さらに RC 階床を介して、RC 柱と RC コア耐力壁で負担させる。
- 最上階(R階)については、RC造の両サイドコア部を立ち上げ、中間部(X3~X6)はY1、 Y4通りの柱のみRC造とし、内部の柱は木造柱としている。
- 最上階木造部分についても、柱梁接合部はすべてピン接合であるため、木造部分の地震力は、 X 方向は両サイドコア部に、Y 方向は外周 RC 造の片持ち柱で処理している。
- 2 階、4 階、R 階の偶数階の木造階の木造部分は、2 時間準耐火とし燃え代設計を行っている。 燃え代寸法は 100mm と仮定している。燃え代は梁は3 面(左右面、下面)、柱は4 面を考慮 している。

2.2 5階建て庁舎プランを対象とする構造検討事例

2.2.1 はじめに

本資料の検討内容は下記の通りである。

- (1) 基本設計図
- (2) 保有水平耐力計算
- (3) 最上階の木造部の長期許容応力度設計と燃えしろ設計による断面検討
- (4) 木造階の事務室の床梁等の長期許容応力度設計と燃えしろ設計による断面検討
- (5) 木造階の長期荷重時の梁端部接合部の検討
- (6) 木造屋根および木造事務室屋根面のY方向地震時の設計用外力と検討方針
- (7) 木造屋根面の Y 方向地震時の面内せん断力に対する検討
- (8) 木造階事務室床面の Y 方向地震時の面内せん断力に対する検討

2.2.2 構造検討

(1) 基本設計図

図 2-2~図 2-22 に基本設計図を示す。

- -2 杭・基礎伏図 / 仮想柱状図 / 杭断面リスト
- -3 各階床伏図(X1~X5通り)
- -4 5階 RC 造床伏図 / 屋根伏図(1)(X1~X8 通り) / 部材リスト(木造部)
- -5 屋根伏図(2)(X1~X8通り)/部材リスト(木造部)
- -6 基礎配筋要領図 / 基礎リスト (一本杭、二本杭)
- -7 地中梁断面リスト(1)/小梁・片持ち梁断面リスト
- -8 地中梁断面リスト(2)
- -9 RC 柱断面リスト
- -10 RC 大梁断面リスト
- -11 スラブリスト / ピットスラブリスト
- -12 RC 壁リスト
- -13 木造階床梁伏図
- -14 木造階吹き抜け周り床梁伏図
- -15 A 詳細図 (RC 柱 木梁接合部詳細図)
- -16 B 詳細図(木梁 木梁接合部詳細図)
- -17 C-1 詳細図(集成材ピン柱の柱脚 -RC 梁納まり図)
- -18 C-2 詳細図(集成材ピン柱の柱頭納まり図)
- -19 D 詳細図(コア RC 梁 集成材梁)/(コア RC 梁 -CLT 床板)
- -20 E 詳細図(RC 柱 鉄骨梁接合部詳細図)
- -21 F 詳細図 (鉄骨梁 木梁接合部詳細図)
- -22 屋根板接合詳細図

プレボーリング拡大根固め工法	拉丁注	「法・プレボ-	リング拡大	根固めて法

<u>杭断面リスト</u>

	杭符号	ŧ.	亢	杭径(mm)・杭種	杭長	杭全長	杭上端 1SL-	杭支持力	杭頭定着筋	杭本数
		上	杭	SC \$\$\phi\$ 1200 (SKK490 t=16.0 105N)	5.0					
	P1	中		PHCφ1200(特厚B種105N)	5.0	17.0	-3. 2	10100	22-D41	4
		「 下	杭	JP-NPH	7.0]				
		上	杭	SC \$\$\phi\$ 1200 (SKK490 t=16.0 105N)	5.0					
	P1A	中	杭	PHCφ1200(特厚B種105N)	5.0	18.0	-2.2	10100	22-D41	8
		下	杭	JP-NPH	8.0					
		上	杭	SC \$\$\phi\$ 1100 (SKK490 t=16.0 105N)	5.0					
	P2	中		PHCφ1100(特厚B種105N)	5.0	17.0	-3. 2	8500	21-D41	16
		「 下		JP-NPH	7.0					
		上	杭	SC \$\phi\$ 1100 (SKK490 t=16.0 105N)	5.0					
	P2A	中		PHCφ1100(特厚B種105N)	5.0	18.0	-2.2	8500	21-D41	8
		下		JP-NPH	8.0					
		上	杭	SC \$\phi 600 (SKK490 t=19.0 105N)	5.0					
	P3	中		PHC φ 600 (B種105N)	5.0	18.0	-1.7	1900	12-D41	9
		下	杭	JP-NPH	8.0					
_									合計	45

仮想柱	状図
-----	----

							上 質 相	È	状	1		X
鋼	査	8										
网络	£ 地)	¥						標	商	KE	M+	
*	リングれ	; : Na _	1			機	種_KR-1.00	孔	内木位	自然	休休	.G
標	標	梁	麿		崔	柴	紀葉			標	2	8
尺	高	đ	厚	士賞	土	色	泥	深	打章 開歌/	100 打		日間
m	m	m	m	記号	風名	譋	*	e H	1 A 1	10	10 m	31
	-0, 80	0.90	0,90	\bowtie	埋土	暗茶褐	全体に細砂主体 上部ガラ少量点在					
1-					demonstrat. I.	m 40.	均宜	1.15	45	45		
2 -	-2.30	2,40	1, 60		HUNKAL	# **0	所々有機物少量点在 所々有機物少量点在	2.15	1	0	1	
3-	-2, 90	3, 00	0, 60	00 ⁰⁰⁰	表通り細砂	暗灰	乾子不均一 含水中位~大 2.7m以際、 ∲5~20mm程度の円 1.11111111111111111111111111111111111	2.47	2	1	1	
-	-3.70	3. 80	0. 80		砂漏り粘土	暗灰	不均質 含水中位~大 粘性 中位 全体に知み少量含む	3. 50	36	20	15	
4-				/	シルト振り細砂	時度	一部 ◆ 10~20m 程度の円濃幅 少量点在 教子不知一 金水中的~本	4.15	30	2	2	2
5-	-5.20	5, 30	1.50				全体にシルト少量含む 所々暗薬褐色帯び、シルトレ	5, 15	11	1	1	6
6	-5.70	5, 80	0, 50	* 0 * 0	砂礫	続灰	シズ状に狭む 45~20m線度の円線主体	5,45	2	1	1	
•					繊維り砂張りシ		東大課住950mm程度 マトリックスは無砂 含水大	6.45	30	15	15	-
7 -					<i>w</i> F	唯次	含水中位~大 粘性中位~大 全体に相砂少量含む	7, 16	1	1	1	-12
8-	-7.60	7.70	1.90	£			一 所々 ¢ 30~40ma程度の円模框 少量点在	7.52	4	1	2	1
-				, 4			均質	8.46	31	-	14	1
9-				\angle			粘性中位	9.15	30	2	2	- 2
10 -				17	登録りシルト	暗灰	全体に数額砂少量含む 10-分沢 東ヶ銀路レンズ分に	9.45	5	2	1	2
				£.,			大む 一日	10.45	30	15	5	
11-	-11.60	11, 70	4.00	/			に捉入	11.16	30	z	1	2
12 -			-,				均質	12, 16	4	1	2	1
19							含水中位	12.45	30	2		
10					week.	14.15	粘性中位	13.45	30	•	-	-
14 -						1400	全体に輕石少量点在	14.15	11	3	3	5
15 -							15m付近、下部に従い暗楽地の	14.45	18_	4	5	9
	-15, 60	15.70	4.00					15.45	30			
16 -					シルト質額砂	嗜灰	全体にシルト少量含む 16.15~16.35m、砂質シルト対	16, 16	30	3	5	8
17 -	-16.80	16.90	1.20		シルト運り中級	ett ke	量す 粒子不均一 含水中位~少	17.15	31	9	10	12
18 -	-17.60	17.70	0.80	/		-	に少量供む 数子不約一 含水中位~大	17.45	44	17	14	13
	-18,65	18, 75	1.05		中砂	暗灰	所々細~粗砂層状に挟む	18.45	30			-
19 -				998	繊維リシルト質	暗灰	粒子不均一 含水中位 全体に沙外比較的多量に含む	19.15	29	15	18	17
20 -	-19,80	19, 90	1.15	0 0 0 0	10		程度の層状に義層挟む	20.15	50	27	23	
-				0.0.0.0			46~30mm程度の円礫主体	20. 33	18		8	
21 -				0.00			兼大課径 ∳ 50m程度	21, 15	10	50	\vdash	\vdash
22 -				0.0.0	0 8	時灰	マトリックスは粗砂	22.15	50	30	20	
23-				0.0.0			含水大	22.29	50	31	19	
-				0.0.0.0			22.45~22.85m. 23.9~24.3m	23. 28	13	-	3	
24 -	-24 55	24.65	6.75	0.0.0			標の混入少ない	24.15	50 30	10	18	22
25 -	_25.00	25.40	0.75	0000	部政	錄灰	粒子均一 含水中位~少	24.45	50	13	23	14
26	00, 30	60, 90	0.15					25.40	26			6
20 -												
27 -												
28 -												
29												
30 -												

図 2-2 杭・基礎伏図 / 仮想柱状図 / 杭断面リスト

部材リスト(木造部)

集成材梁:カラマツ E105-F300 WG1:400x700 WG2:400x900 WG3:400x1000 WG4:400x600 WG5:150x500 WG1A:500x700 集成材柱:カラマツ E105-F345 P1:450x450 CLT床板 Mx60-5-7 スギ:厚210

燃え代:120分相当(100mm)3面を考慮

構造種別:RC造+木造 混構造 構造形式:X,Y方向共 耐震壁付ラーメン構造 (水平力は全てRC造で処理) 重要度係数: I = 1.0 コンクリート強度:Fc = 39 N/mm2

保有水平耐力(Ds=0.55) X方向:1.23 Y方向:1.12

<u>部材リスト(木造部)</u>

集成材梁:カラマツ E105-F300 WG1:400x700 WG2:400x900 WG3:400x1000 WG4:400x600 WG5:150x500 WG1A:500x700 集成材柱:カラマツ E105-F345 P1:450x450 CLT床板 Mx60-5-7 スギ:厚210

燃え代:120分相当(100mm)3面を考慮

構造種別:RC造+木造 混構造 構造形式:X,Y方向共 耐震壁付ラーメン構造 (水平力は全てRC造で処理) 重要度係数:I = 1.0 コンクリート強度:Fc = 39 N/mm2 保有水平耐力(Ds=0.55) X方向:1.23 Y方向:1.12

基礎リスト(1本杭)

符号	F1 (1-1200φ)	F2 (1-1100φ)	F1A (1-1200φ)	F2A (1-1100φ)	F3 (1-600φ)
Α	3000	2750	3000	2750	1500
В	3000	2750	3000	2750	1500
N1	15-D19	15-D19	15-D19	15-D19	7-D19
N2	15-D19	15-D19	15-D19	15-D19	7-D19
Df	3400	3400	2400	2400	1900
D3	2000	2000	2000	2000	1800
D4=Df-D3	1400	1400	400	400	100
D5	200	200	200	200	200

竹旦	F4	
何万	$(2-1100\phi)$	
A	5500	
В	4000	
N1	20-D25	
N2	20-D19	
ST	□-D16-@200	
Df	3400	
D3	3400	
D4=Df-D3	0	
D5	200	

図 2-6 基礎配筋要領図 / 基礎リスト(一本杭、二本杭)

地中迩	断面リスト(1)	1/50 ± ≋	ったき限り 1 由正的・1	110-@1000 2 2段篮码	+	В	.構造分野			
符号		FG1			FG2			FG3		
位置	内端	中央	外端	内端	中央	外端	Y3 端	中央	Y4 端	Y2 端
1SL										
50 3000 250 2750 K										
20										₩ :===:=
断面		800 x 3000			800 x 3000			800 x 2000		
上 防 S 腹筋	7-D32 6-D32	6-D32 (8+2)-D32 □-D13-@150 16-D13	(8+2) -D32 (8+2) -D32	(8+2) -D32 6-D32	6-D32 (8+2)-D32 □-D13-@150 16-D13	(8+3) -D32 (8+2) -D32	(8+2) -D32 6-D32	8-D32 (8+3)-D32 □-D13-@150 10-D13	(8+5) -D32 (8+4) -D32	(8+4) -D32 7-D32
符号		FG5			FG6			FG7		FG8
位置	Y1 端	中央	Y2 端	Y0 端	中央	Y1 端	Y0 端	中央	Y1 端	全断面
1SL_										
50 50 2000										
断面		800 x 2000			600 x 1500			600 x 1500		600 x 1500
上筋	(8+3) -D32	8-D32	(8+4) -D32	(5+1) -D32	4-D32	(5+3) -D32	(5+1) -D32	5-D32	(5+3) -D32	(5+2) -D32
<u>ト筋</u> S T	8-032	(8+3) -D32	8-D32	(5+1)-D32	<u>5−D32</u> □−D13−@200	5-D32	5-032	<u> </u>	(5+3)-D32	(5+2)−D32
腹筋		16–D13			10-D13			10-D13		10–D13
小梁・	片持ち梁断面リ	スト 1/30	特記なき限り	1. 巾止筋:D10-@1000	2.2段筋受け筋:D10-	@1000		1		1
符号		B1	B	2	B3		B4	C	G1	
位置	端 部	中央	端部	中央	全断面	端部	中央	基端	先 端	基端
断面	600	x 800	600 x	900	400 x 600	700 :	x 600	600 x 1000	600 x 600	600 x 800
<u>上 筋</u> 下 筋	<u>υ-υ25</u> 4-D25	4-025 6-D25	6-D25 4-D25	4-025 6-D25	3-D25 3-D25	6-D25	<u>6-025</u> 9-D25	4-D35 4-D35	4-D35 4-D35	5+1-D25 5+1-D25
S T	□-D1	3–@200	□-D13	-@200	□-D10-@200	D1	3-@150	D1	3-@200	
腹筋	4–	D13	4–D	13	2-D10	2-1	D13	4-1	D13	

地中梁國	也中梁断面リスト (2) 1/30 時記なき限り 1. 中止筋: D10-@1000 2. 2段筋受け筋: D10-@1000 B.構造分野												
符号	F(G9	FG	10	F	311	FG12		FG13		FG14		
位置		中央	端部	中央	端部	中央	全断面	外端	中央	内端	全断面		
1SL													
	<u>p </u>		<u> </u>		<u> </u>		p o o o q		p 0 0 q	ρ <u></u>			
3000 2750												1500	
50 250	· · · ·						· · •						
20		=:===::	::			:::		=:===::					
断面	800 x	< 2000	800 x	2000	800	x 2000	800 x 2000		600 x 1500		600 x 1500		
上筋	(8+2) -D32	6-D32	(8+1)-D32	5-D32	(8+3) -D32	6-D32	6-D32	(5+1) -D32	4-D32	4-D32	4-D32		
下筋	7-D32	7-D32	7-D32	7-D32	7-D32	7-D32	6-D32	(5+1)-D32	4-D32	3-D32	3-D32		
い うち	וע- <u>ו</u> 10–	3-@150 -D13	10-UT	3−⊎150 .013	וע-LI 10-	3-@150 -D13	16-D13-@150		8-D10		8-D10		
符号	FB1	FI	B2	FE	33		10 010						
位置	全断面	端部	中央	端部	中央								
1S <u>L</u>													
50 3000 250 2750													
		 				 			::				:
新 函	500 x 3000	500 v	(2000	500 v	1500								
上筋	4-D25	4-D25	4-D25	4-D25	4-D25								
下筋	4-D25	4-D25	(4+2) -D25	4-D25	(4+1) -D25								
S T	□-D13-@200	□-D1	3-@200	□-D1:	3–@200								
	10_D12	10-	-D13	10-	D13								

柱断面	リスト 1/50	<u>特記なき限り 1.巾止筋:D10-@500</u>		
符号	C1	C1A	C2	
5階				
断面	1000 x 1000	1000 x 1000	900 x 900	
主筋	28-D35	28-D35	30–D35	
HOOP	□_D16_@100	□-D16-@100	□-D16-@100	
4階				
断面	1000 x 1000	1000 x 1000	1000 x 1000	
主筋	28-D35	28-D35	30-D35	
HOOP	□_D16_@100	□-D16-@100	□-D16-@100	
3階				
断面	1000 x 1000	1000 x 1000	1000 x 1000	
主筋	32–D35	32-D35	32–D35	
HOOP	□-D16-@100	□ −D16−@100	□-D16-@100	
2階				
断面	1100 x 1100	1100 x 1100	1000 x 1000	
主筋	40-D35	40-D35	36-D35	
HOOP	□-D16-@100	□D16-@100	□-D16-@100	
1階				
断面	1200 x 1200	1200 x 1200	1000 x 1000	
主筋	48-D35	48-D35	36–D35	
HUUP	<u>□</u> -D16-@100	LTT -D10-@100	<u>□</u> -D16-@100	

大梁断	面リスト 1/	30 特記	なき限り 1.巾止筋:[)10-@1000 2.2段筋受(ナ筋:D10-@1000
符号	G1	G	2	G	3
位置			中央		中央
PHR階		411 1114			
断面	200 x 700	/		/	
上筋	(2+2)-D16	· / · · · ·			
	<u> </u>	/			
服用	4-010			1	
R階					
断面	900 x 1000	600 >	< 800	600	x 800
上筋	6-D32	<u>5-D32</u>	5-032	6-D32	6-D32
ト筋	6-D32	5-032	5-D32	5-032	5-D32
10日 日本	<u>Δ</u> –D13–@100 <u>Δ</u> –D12)13		5 @200 D13
<u>л</u> я, ял	010	41	/10	4	
5階					
断面	900 x 1000	900 x	1000	900 >	(1000
上筋	6-D32	8-D32	6-D32	8+2-D32	8-D32
下筋	6-D32	8-D32	8-D32	8+2-D32	8-D32
S T	□-D13-@100	□-D16	6–@200	□-D1	3-@100
腹筋	4-D13	4-[013	4-	D13

符	号	G1	G	2			
4階							
断	面	900 x 1000	900 x	1000			
Ŀ	筋	6-D32	8-D32	6-D32			
下	筋	6-D32	8-D32	8-D32			
S	T	□-D13-@100	□-D1	6–@200			
腹	筋	4-D13	4-[013			
3	階			·,			
断	面	900 x 1000	900 x	1000			
Ŀ	筋	6-D32	(8+2) -D32	6-D32			
下	筋	6-D32	8-D32	8-D32			
S	T	□-D13-@100	□-D10	6–@200			
腹	筋	4-D13	4-D13				
2	階						
断	面	900 x 1000	900 x	1000			
上	筋	6-D32	8-D32	6-D32			
下	筋	6-D32	8-D32	8-D32			
S	T	□-D13-@100		6-@200			
腹	筋	4-D13	4-[013			

図 2-10 RC 大梁断面リスト

	1000 上筋定着長		<u>2-D1</u>	6	1	
		<u> </u>				
		-				
					D16	
		-			2-	
			<u>2-D</u>	16		
		•	•		E R	İ
/						1
/	в түрн	Ξ	(片持	スラ	ブ)	

スラブリス	ト					
佐旦	符 号 タイプ スラブ厚		位署	短辺方向	長辺方向	備考
117 75				全断面	全断面	
C1		200	上筋	D10D13-@200	D10 -@200	エエマミ
51		200	下筋	D10 -@200	D10 -@200	
			上筋			
			下筋			
			上筋			
			下筋			
			上筋			
			下筋			
			上筋			
			下筋			
			上筋			
			下筋			
			上筋			
			下筋			

ピットスラブリスト

	////						
佐旦	カイゴ	スラブ厚	広 罢	短辺方向	長辺方向	进 老	
117 7	212			全断面	全断面	1/11 75	
EQ1		250	上筋	D13 -@200	D13 -@200	エエマこ	
FSI	A		下筋	D13 -@200	D13 -@200		
			上筋				
			下筋				
			上筋				
			下筋				

図 2-11 スラブリスト / ピットスラブリスト

図 2-12 RC 壁リスト

4-DP16 (L=195) (SS400) 400x700 (E105-F300) 100 30 <u></u> <u>埋め木</u> L=100 LST 9-STS-C65 @1000 <u>G. PL-9 (SS400)</u> 4-DP16 (SS400, L=200) $^{\wedge}$ CLT床:t=210(Mx60-5-7) CLT床:t=210(Mx60-5-7) 40 50 40 50 1 85 300 <u>LST 9-STS-C65</u> @1000 130 75 75 20 400x700 (E105-F300) -----B. PL-16 (SS400) A.BOLT 4-M16(SS400相当)

> A詳細図 1/20 (RC柱-木梁接合部詳細図) 特記なき限り、ドリフトピンの材質はSS400とする。

図 2-15 A 詳細図 (RC 柱 - 木梁接合部詳細図)

木梁-木梁接合部詳細図 1/20

特記なき限り、ドリフトピンの材質はSS400とする。

図 2-16 B 詳細図(木梁 - 木梁接合部詳細図)

B.構造分野

図 2-17 C-1 詳細図 (集成材ピン柱の柱脚 -RC 梁納まり図) B-39~B-40

<u>A.BOLT 4-M16(SS400相</u>当) (鉛直荷重支持用)

400x700 (E105-F300)	
	300
	002
<u>@1000(SS400</u> 相当) 用) CLT床:t=210(Mx60-5-7)	1000
0	1000

RC柱-S梁接合部詳細図 1/20

図 2-20 E 詳細図 (RC 柱 - 鉄骨梁接合部詳細図)

図 2-21 F 詳細図(鉄骨梁 - 木梁接合部詳細図)

(2) 保有水平耐力計算

仮定荷重

表 2-1 に仮定荷重を示す。

<u>1. 床荷重(N/m</u>	1 ²)					-		
名称	仕上げ	(t)	(γ)	w	DL		LL	ΤL
		(mm)			(仕上)		(N/m^2)	(N/m²)
木造勾配屋根	金属板			100			600	3000
	防水			200			600	3000
	CLT板	210		1000			600	3000
	集成材梁			800				
	天井			300				
					2400			
木造勾配屋根	金属板			100			600	7000
RC上	防水			200			600	7000
	CLT板	210		1000			600	7000
	RCスラブ	200	24.0	4800				
	天井			300				
					6400			
屋上室外機置場	押さえコン	100	23	2300			5000	12550
PHR階(RC)	防水			150			4000	11550
	RCスラブ	200	24	4800			3000	10550
	天井	200		300			0000	10000
				000	7550			
議会室(RC)	タイルカーペット			100	1000	S	2900	8900
5階	DATER			500		R	2600	8600
огн	RCスラブ	200	24_0	4800		F	1600	7600
	王世	200	24.0	300		L	1000	1000
	月日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日			200				
	间江奶り壁			300	6000			
古 改記(十)生)	4 d d at a const			100	6000	c	2000	6600
争務所(木垣)	91121- 01722			100		5	2900	5500
2階、4階		100		500		K	1800	5500
	ALC 板	100		700		E	800	4500
	CL1板 在 DLLM	210		1000				
	集成材梁			800				
	大井			300				
	間仕切り壁			300				
					3700			
事務所(RC)	タイルカーペット			100		S	2900	8900
1階、3階	OAフロア			500		R	1800	7800
	RCスラブ	200	24.0	4800		E	800	6800
	天井			300				
	間仕切り壁			300				
					6000			
機械室(RC)	仕上げ			600		S	5000	10700
防災無線室(RC)	RCスラブ	200	24.0	4800		R	4000	9700
倉庫(RC)	天井			300		E	3000	8700
					5700			
便所(RC)	仕上げ			600		S	1800	7500
04//1 (/	RCスラブ	200	24.0	4800		R	1300	7000
	天井	200	511.0	300		E	600	6300
				000	5700	Ľ	000	0000
階段(RC)	仕上げ	1		600	0.00	S	2900	11160
r=+X (n0)	陸段	300	24 0	7200		R	1800	10060
	114X 捕し打た	20	23.0	460		F	800	9060
	相じ11-5	20	20.0	100	8260	L	000	5000
バルフィー(PC)	仕上げ	+		600	0200	ç	1800	7500
	ILエリ DCフラブ	200	24.0	4800		D	1200	7000
2階、5階	ポスクノ	200	24.0	4800		K	1300	7000 C200
	大开			300	5700	E	600	6300
上半皮	ム尼七			100	5700	C	C00	0100
个垣此	金偶仮			100		5	600	2100
	的小 or mtr	010		200		K	600	2100
	CL1板	210		1000		E	600	2100
	大开			200	1500			
PHR屋根(RC)	押さえコン	100	23	2300		S	600	6250
	防水			150		R	600	6250
	RCスラブ	150	24	3600		E	600	6250
	天井			200				
					6250			

表 2-1 仮定荷重

Ⅱ.壁荷重

名称	仕上げ	(t) (mm)	(γ)	w	合計 (N/m²)	備考
外壁	CLTカーテンウォール				1000	

- ② 解析方法の概要
 - 立体解析一貫構造計算プログラムは、「Build. 一貫V(構造ソフト社)」を用いた。
 - モデル化については、柱梁部材は剛域を考慮した線材置換(曲げ/せん断/軸変形を考慮)とし、
 耐力壁はエレメント置換とした。
 - 地震力の与え方については、1次設計時(C0=0.2時)は剛床仮定した立体モデルの重心に地 震力を入力し、2次設計(保有水平耐力計算時)は1次設計時同様に重心位置に水平力を入力 して荷重増分解析を行った。増分解析時の外力分布は1次設計時 Ai 分布とした。
 - 保有水平耐力は耐力壁が最初にせん断降伏を生じた時点の耐力とした。

③ 地震力

表2-2に地震力計算用諸元、表2-3に地震力用建物重量、表2-4に建物重量・設計用層せん断力を示す。

+	1.00
+	第2種地盤
用途係数(地震荷重割増係数)	1.00
	X方向 自動設定 Y方向 自動設定
標準層せん断力係数 	X方向 S造ルート1:0.3、 それ以外:0.2 Y方向 S造ルート1:0.3、 それ以外:0.2
	X方向 基準法による Y方向 基準法による
	X方向 1.000 Y方向 1.000
+	X方向 基準法による Y方向 基準法による
+	X方向 0.444(sec) Y方向 0.444(sec)
↓ │ 一次固有周期計算用建物高さ	自動計算(階高の合計+1階床レベルからGLまで)

表 2-2 地震力計算用諸元

表 2-3 地震力用建物重量

+												ı.
 階	積載 (kN)	床自重 (kN)	小梁 (kN)	梁自重 (kN)	 柱自重 (kN)	壁自重 (kN)	追加 (kN)	フレーム外 (kN)	積雪 (kN)	ノハ 計 (kN)	合計 (kN)	
RF	152	596	84	256	34	204	0	0	0	1326	1326	ļ
5F	1737	7810	1511	4612	1364	1513	0	0	0	18547	19873	ļ
4F	3498	16092	5603	10026	3313	2992	480	0	0	42005	61878	Į
3F	1954	9810	1546	4040	4015	3317	960	0	0	25642	87521	ļ
2F	2267	16083	5366	9966	4223	3535	960	0	0	42399	129919	ļ
1F	2048	10271	1503	4102	4644	3707	1560	0	0	27836	157756	ļ
基礎	1907	34134	15741	23651	5713	2470	0	0	0	83616	241371	ļ
+			+		+					+		t

ここで、

積 載: 積載荷重(地震力用)による重量	追 加: 節点・大梁・小梁の追加重量(地震力用)、
床自重: 床の自重(スラブ上の雑壁を含む)	片持ち床・梁先端荷重及び追加荷重、パラペットの自重
小 梁: 小梁と片持ち小梁の自重	フレーム外:フレーム外重量(地震力用)
梁自重: 大梁と片持ち梁の自重	積 雪: 積雪荷重(地震力用)
柱自重: 柱の自重	小 計:その階の建物重量
壁自重: 壁の自重(小梁上の雑壁を含む)	合 計:その階より上部の建物重量の和
※自重には仕上重量が含 ま れ る 。	

表 2-4 建物重量・設計用層せん断力

T = 0.	444(sec)	Rt = 1.00	00						Co = 0.200			
Wi	ΣWi	αi	Ai	Ci	К	Qi	CiIN	QiIN	Pi	Qid	Wi/A	
1326	1326	0.000	0.000	0.000	1.000	1326	(0.000)	0	0	1326	5.3	
18547	19873	0. 126	2.025	0. 405	0.000	8048	(0.000)	0	0	8048	8.5	
42005	61878	0. 392	1. 459	0. 292	0.000	18052	(0.000)	0	0	18052	15.8	
25642	87521	0. 555	1. 300	0.260	0.000	22755	(0.000)	0	0	22755	11. 9	
42399	129919	0.824	1. 106	0. 221	0.000	28738	(0.000)	0	0	28738	16.0	
27836	157756	1.000	1.000	0.200	0.000	31551	(0.000)	0	0	31551	12.3	
83616	241371											
方向】 T = 0.444(sec) Rt = 1.0									Co = 0	. 200		
Wi	ΣWi	αi	Ai	Ci	К	Qi	CiIN	QiIN	Pi	Qid	Wi/A	
1326	1326	0.000	0.000	0.000	1.000	1326	(0.000)	0	0	1326	5.3	
18547	19873	0. 126	2.025	0. 405	0.000	8048	(0.000)	0	0	8048	8. 5	
42005	61878	0. 392	1. 459	0.292	0.000	18052	(0.000)	0	0	18052	15.8	
		T										
25642	87521	0.555	1.300	0.260	0.000	22755	(0.000)	0	0	22755	11.9	
25642 42399	87521 129919	0. 555	1. 300 1. 106	0. 260 0. 221	0.000	22755 28738	(0.000)	0	0	22755 28738	11. 9 16. 0	
25642 42399 27836	87521 129919 157756	0. 555 0. 824 1. 000	1. 300 1. 106 1. 000	0. 260 0. 221 0. 200	0.000	22755 28738 31551	(0.000) (0.000) (0.000)	0	0 0 0	22755 28738 31551	11.9 16.0 12.3	
	T = 0. Wi 1326 18547 42005 25642 42399 27836 83616 T = 0. Wi 1326 18547 42005	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

ここで、

Z	: 地域係数	Qi : 地震時層せん断力(Qi=Ci·ΣWi)	(kN)
T D+	: 一次固有周期 (sec)	(Ciの直接指定がある場合はQi=CiIN·ΣWi)	
Wi	・振動特性保険 :その階の建物重量 (kN)	OIN :層せん断力の直接指定	(kN)
ΣWi	: その階より上部の建物重量の和(kN)	Pi : 剛床の外力直接指定。	(kN)
ai	: ΣWi/W(W:地上部分の建物重量の和) ・ ムム 低物	Qid : 剛床の設計用層せん断力(*付は部分地下の部分) Wi/A: 単位面積当り建物重量	(kN)
ĉi	:層せん断力係数	(Wi/Aの算定時のWiには積雪の重量を含まない)	/ 1112)
K	:水平震度(地下階・塔屋階のみ)	Co : 標準層せん断力係数	
Z =	1.00 第 2種地盤 (Tc = 0.600 sec)	一次固有周期計算用建物高さ 22.200(m)	

④ 保有水平耐力の検定

表 2-5 に X 方向加力時の検定結果、表 2-6 に Y 方向加力時の検定結果を示す。また、図 2-23 に各 方向の負方向加力時の層せん断力 - 層間変形関係を示す。

表 2-5 X 方向加力(上:正方向/下:負方向)

11	保有水平耐力の決定条件:部材塑性率が指定値に達した										
Ī	谐	種別	Ds値	Fes値	Qud	Qun	Qu	Qu/Qun	判定	RQu	
	5F 4F 3F 2F 1F	RC RC RC RC RC RC	0. 40 0. 55 0. 55 0. 55 0. 55 0. 55	1.000 1.000 1.000 1.000 1.000 1.000	40241 90258 113775 143692 157756	16097 49642 62576 79030 86766	27887 62549 78846 99572 109325	1.73 1.25 1.25 1.25 1.25 1.25	OK OK OK OK OK	1/490 1/356 1/308 1/226 1/398	

保有	保有水平耐力の決定条件:部材塑性率が指定値に達した									
	種別	Ds値	Fes値	Qud	Qun	Qu	Qu/Qun	判定	RQu	
5F 4F 3F 2F 1F	RC RC RC RC RC RC	0. 40 0. 55 0. 55 0. 55 0. 55	1.000 1.000 1.000 1.000 1.000 1.000	40241 90258 113775 143692 157756	16097 49642 62576 79030 86766	27887 62549 78846 99572 109325	1.73 1.25 1.25 1.25 1.25 1.25	OK OK OK OK OK	1/490 1/356 1/308 1/226 1/398	

表 2-6 Y 方向加力(上:正方向/下:負方向)

保有才	保有水平耐力の決定条件:増分計算の終了時(層間変形角、部材塑性率が指定値に達していません)								
	種別	Ds值	Fes值	Qud	Qun	Qu	Qu/Qun	判定	RQu
5F 4F 3F 2F 1F	RC RC RC RC RC RC	0.45 0.55 0.55 0.55 0.55!	1.000 1.000 1.000 1.000 1.000 1.000	40241 90258 113775 143692 157756	18109 49642 62576 79030 86766	24973 56017 70612 89171 97907	1.37 1.12 1.12 1.12 1.12 1.12	OK OK OK OK OK	1/590 1/230 1/192 1/154 1/234

+	(平耐力の)	決定条件:	増分計算の結	終了時(層間	変形角、	。 部材塑性率	るが指定値に	達してい	ません)
階		Ds值	Fes值	Qud	Qun	Qu	Qu/Qun	判定	RQu
5F 4F 3F 2F 1F	RC RC RC RC RC RC	0.45 0.55 0.55 0.55 0.55 0.55!	1.000 1.000 1.000 1.000 1.000 1.000	40241 90258 113775 143692 157756	18109 49642 62576 79030 86766	24973 56017 70612 89171 97907	1.37 1.12 1.12 1.12 1.12 1.12	0K 0K 0K 0K 0K	1/591 1/230 1/193 1/155 1/234

- (3) 最上階の木造部の長期許容応力度設計と燃えしろ設計による断面検討
- (1) 屋根梁のたわみ

図 2-24 に全体の変形図を示す。検定部位の変形について、クリープ増大係数は 2 として 1/200 以 下を確認した。

- Y2通り(図 2-25) a.
- $\delta' = \{11.4$ mm (1.6mm + 1.4mm)/2 $\} = 9.9$ mm •
- $2\delta' / L = 2 \ge 9.9 \text{ mm} / 10000 \text{ mm} = 1/505 \le 1/200 \text{ OK}$ •
- b. X3 通り(図 2-26)
- $\delta' = \{11.5 \text{mm} (1.0 \text{mm} + 1.0 \text{mm})/2\} = 10.5 \text{mm}$ ٠
- $2\delta' / L = 2 \ge 10.5 \text{ mm} / 10000 \text{ mm} = 1/476 \le 1/200 \text{ OK}$ •
- X6 通り (図 2-27) C.
- $\delta' = \{11.3$ mm-(1.4mm+1.4mm $)/2\} = 9.9$ mm ٠
- $2\delta' / L = 2 \ge 9.9 \text{ mm} / 10000 \text{ mm} = 1/505 \le 1/200 \text{ OK}$ •
- X2 通り-X3 通り (図 2-28) d.
- $\delta' = \{21.4$ mm-(10.9mm+10.9mm $)/2\} = 10.5$ mm ٠
- $2\delta' / L = 2 \times 10.5 \text{ mm} / 10000 \text{ mm} = 1/476 \le 1/200 \text{ OK}$ •
- X5 通り-X6 通り (図 2-29) e.
- $\delta' = \{19.8$ mm- (10.0+10.0) mm/2 $\} = 9.8$ mm •
- $2\delta^\prime$ / L = 2 x 9.8mm / 10000 mm = 1/510 \leq 1/200 OK
- $\delta' = \{15.5$ mm-(9.5+1.5)mm/2 $\} = 10.5$ mm •

 $2\delta'$ / L = 2 x 10.0 mm / 10000 mm = 1/500 \leq

図 2-24 屋根梁の長期変形図 [mm]

Y2 通りの屋根梁の長期変形図 [mm]

図 2-29 X5 通り-X6 通り間の屋根梁の長期変形図 [mm]

② 屋根梁の曲げ

図 2-30 に長期荷重時の屋根梁全体、図 2-31~図 2-33 に検定部位の曲げモーメント図を示す。通常 断面における長期許容応力度以下、燃えしろ寸法を除いた断面における短期許容応力度以下であるこ とを確認した。検定結果を表 2-7 に示す。

	部位		Y2	通り	Y2	通り	X6	通り	X2通り	-X3通り
	피메		X2通り-	X3通り間	X6通り-	X7通り間	Y3通り-	Y4通り間	Y2通り-	Y3通り間
	荷重条件		長期	燃えしろ	長期	燃えしろ	長期	燃えしろ	長期	燃えしろ
Ē		等級	E105	-F300	E105	-F300	E105	-F300	E105	-F300
材料 断面 設計荷重 許容応力度 寸法調整係数 有効断面係数 曲げ応力度	構	構成		等級構成	対称異	等級構成	対称異	等級構成	対称異	等級構成
	樹	種	カラ	マツ	カラ	マツ	カラ	マツ	カラ	マツ
腋鱼	В	[mm]	400	200	400	200	400	200	400	200
12/11/11	D	[mm]	1000	900	900	800	600	500	600	500
設計荷重	M _d	[kNm]	345	345	204	204	70	70	70	70
許容応力度	f_{b}	[N/mm ²]	11.0	20.0	11.0	20.0	11.0	20.0	11.0	20.0
寸法調整係数	Kz	[-]	0.87	0.89	0.89	0.90	0.93	0.94	0.93	0.94
有効断面係数	Ze	[mm ³]	53333333	27000000	43200000	21333333	19200000	8333333	19200000	8333333
曲げ応力度	$\sigma_{\rm b}$	[N/mm ²]	6.47	12.78	4.72	9.56	3.65	8.40	3.65	8.40
検定比	$\sigma_{\rm b}/(K_{\rm z} {\rm x} f_{\rm b})$	[-]	0.67	0.72	0.49	0.53	0.36	0.44	0.36	0.44
判定	.111	[-]	OK	OK	OK	OK	OK	OK	OK	OK

表 2-7 屋根梁の曲げ応力に対する検定結果

* 有効断面係数Z。は、長期時は全断面有効時の値に一律0.8掛けした値、燃えしろ時は全断面有効時の値とした。 * 燃えしろは、火災時間120分として、断面の両側面および下面について、100mmを考慮した。

* 然えしろは、火災時間120万として、断阻の両側面ねよび下面について、100mmを考慮した

図 2-30 屋根梁の長期荷重時の曲げモーメント図 [kNm]

図 2-31 Y2 通りの屋根梁の長期荷重時の曲げモーメント図 [kNm]

図 2-32 X6 通りの屋根梁の長期荷重時の曲げモーメント図 [kNm]

図 2-33 X2 通り-X3 通り間の屋根梁の長期荷重時の曲げモーメント図 [kNm]

③ 屋根梁のせん断

図 2-34 に長期荷重時の屋根梁全体のせん断力図を示す。通常断面における長期許容応力度以下、 燃えしろ寸法を除いた断面における短期許容応力度以下であることを確認した。検定結果を表 2-8 に 示す。

	或佔		Y2	通り	Y2	通り	Y1通り	-Y2通り	
	그리 어덕		X3通り-	X4通り間	X5通り-	X6通り間	X6通り-J	X7通り間	
:	荷重条件		長期	燃えしろ	長期	燃えしろ	長期	燃えしろ	
	強度	等級	E105	-F300	E105	-F300	E105	-F300	
材料	構	成	対称異	等級構成	対称異	等級構成	対称異論	等級構成	
	樹	種	カラ	マツ	カラ	マツ	カラマツ		
新史	В	[mm]	400	200	400	200	400	200	
四日	D	[mm]	1000	900	900	800	600	500	
設計荷重	$Q_{\rm d}$	[kN]	121	121	74	74	28	28	
許容応力度	f_{s}	[N/mm ²]	1.3	2.4	1.3	2.4	1.3	2.4	
有効断面積	A _e	[mm ²]	320000	180000	288000	160000	192000	100000	
せん断応力度	σ_{s}	[N/mm ²]	0.57	1.01	0.39	0.69	0.22	0.42	
検定比 σ _s /f _s [-]			0.43	0.42	0.29	0.29	0.17	0.18	
判定		[-]	OK	OK	OK	OK	OK	OK	

表 2-8 屋根梁のせん断応力に対する検定結果

*有効断面係数A。は、長期時は全断面有効時の値に一律0.8掛けした値、燃えしろ時は全断面有効時の値とした。 *燃えしろは、火災時間120分として、断面の両側面および下面について、100mmを考慮した。

図 2-34 屋根梁の長期荷重時のせん断力図 [kN]

④ 最上階の木造部の柱の圧縮

図 2-35 に Y2 通りの長期荷重時の柱の軸力図を示す。通常断面における長期許容応力度以下、燃 えしろ寸法を除いた断面における短期許容応力度以下であることを確認した。検定結果を表 2-9 に示 す。

	郭佶		Y2	通り
	티니까.		X5	通り
	荷重条件		長期	燃えしろ
	強度	等級	E95-	-F315
材料	構	成	同一等	系級構成
	樹	種	カラ	マツ
紙西	В	[mm]	450	250
阿田	D	[mm]	450	250
柱長さ	L	[mm]	4200	4200
設計荷重	N _d	[kN]	359	359
断面二次半径	i	[mm]	130	72.3
細長比	λ	[-]	32.3	58.1
座屈低減係数	η	[-]	0.98	0.72
許容応力度	$f_{\rm c}$	[N/mm ²]	9.5	17.3
有効断面積	A _e	[mm ²]	162000	62500
圧縮応力度	$\sigma_{ m c}$	[N/mm ²]	2.22	5.74
検定比	$\sigma_{\rm s}/(\eta {\rm x} f_{\rm c})$	[-]	0.24	0.46
判定	2	[-]	OK	OK

表 2-9 最上階の木造部の柱の圧縮応力に対する検定結果

*有効断面係数4。は、長期時は全断面有効時の値に一律0.8掛けした値、燃えしろ時は全断面有効時の値とした。 *燃えしろは、火災時間120分として、断面の4面について、100mmを考慮した。

図 2-35 Y2 通りの最上階の柱の長期荷重時の軸力図 [kN]

⑤ 検討に用いた集成材の弾性係数と許容応力度

表 2-10 に検討に用いた集成材の弾性係数と許容応力度を示す。

名称。	とヤング係数				基準強度	まと許容応	いっちょうしん ちょうしん ちょうしん しんしん しんしん しんしん ちょうしん しんしん しんしん しんしん しんしん しんしん しんしん しんしん			
	樹種	其淮跲庻	圧縮	引張	曲	げ	せん	ん断	めり	込み
種別	強度等級	$\underline{\Sigma}$	Fc	Fτ	F _{B1}	F _{B2}	F _{S1}	F _{S2}	F	CV
	$\{E(kN/mm^2)\}$	F (N/1111)	26. 0	22.7	31.5	31.5	3.6	3.0	7.	8
	からまつ	長期許容	圧縮	引張	曲	げ	せん断		めり込み_f _{cv}	
	からまう	応力度	Lt°	Lft	Lf _{b1}	Lf _{b2}	Lf _{s1}	Lf _{s2}	$\theta \leq 10$	70≦ <i>θ</i>
同一等		$_{L}f(N/mm^{2})$	9.5	8.3	11.6	11.6	1.3	1.1	9.5	2. 9
	E90-F310	短期許容	圧縮	引張	曲	げ	せん	ん断	めり込	♪みsf _{cv}
級構成	(0 E)	応力度	sf _c	sft	sf _{b1}	sf _{b2}	sf _{s1}	sf _{s2}	$\theta \leq 10$	70≦ <i>θ</i>
集成材	[9.0]	_s f(N/mm²)	17.3	15. 1	21.0	21.0	2.4	2.0	17.3	5.2
	選択	積雪時許	圧縮	引張	曲	げ	せん断		めり込み _{ss} f _{cv}	
	強度 18	容応力度	$_{ss}f_{c}$	_{ss} f _t	_{SS} f _{b1}	_{SS} f _{b2}	_{SS} f _{s1}	_{ss} f _{s2}	$\theta \leq 10$	70≦ <i>θ</i>
	樹種 19	_{ss} f(N/mm²)	13.9	12.1	16.8	16.8	1.9	1.6	13.9	4.2
名称。	とヤング係数				基準強度	まと許容応	いたの			
名称。	<u>とヤング係数</u> 樹種	其淮诰庻	圧縮	引張	基準強度 曲	きと許容応 げ	い い し し し し し し し し し し し し し し し し し し	も断	めり	込み
名称。 種別	<u>とヤング係数</u> 樹種 強度等級	基準強度 F (N/mm ²)	圧縮 Fc	引張 F _T	基準強度 曲 F _{B1}	€と許容応 げ F _{B2}	5カ度 せん F _{S1}	ん断 F _{s2}	めり F	込み cv
名称。 種別	とヤング係数 樹種 強度等級 {E(kN/mm ²)}	基準強度 F(N/mm ²)	圧縮 F _c 23.2	引張 F _T 20. 2	基準強度 曲 F _{B1} 30.0	を許容成 げ F _{B2} 21.6	5力度 せん F _{S1} 3.6	ん断 F _{s2} 3.0	めり F 7.	込み cv 8
名称。 種別	とヤング係数 樹種 強度等級 {E(kN/mm ²)}	基準強度 F(N/mm ²) 長期許容	圧縮 F _c 23.2 圧縮	引張 F _T 20.2 引張	基準強度	度と許容応 げ F _{B2} 21.6 げ	な力度 せん F _{s1} 3.6 せん	る断 F _{s2} 3.0 る断	めり F 7. めり込	込み cv 8 _み_f _{cv}
名称。 種別	<u>とヤング係数</u> 樹種 強度等級 {E(kN/mm ²)} からまつ	基準強度 F(N/mm ²) 長期許容 応力度。	圧縮 F _c 23.2 圧縮 ∟ ^f 。	引張 F _T 20.2 引張 ∟f _t	基準強度 F _{B1} <u>30.0</u> 世 f _{b1}	まと許容成 げ F _{B2} 21.6 げ _L f _{b2}	な力度 せ/ F _{s1} 3.6 せ/ f _{s1}	ん断 F _{s2} 3.0 ん断 f _{s2}	めり F 7. めり込 θ≦10	込み cv 8 み _L f _{cv} 70≦ <i>θ</i>
名称。 種別	とヤング係数 樹種 強度等級 {E(kN/mm ²)} からまつ	基準強度 F(N/mm ²) 長期許容 応力度 _f(N/mm ²)	圧縮 Fc 23.2 圧縮 _L f。 8.5	引張 F _T 20.2 引張 _↓ f _t 7.4	基準強度	まと許容成 げ <u>F_{B2} 21.6</u> げ _L f _{b2} 7.9	ン力度 <u>サ</u> ノ F _{S1} 3.6 せん L ^f s1 1.3	ん断 F _{s2} 3.0 ん断 Lf _{s2} 1.1	めり F 7. めり込 θ≦10 8.5	込み ^{cv} 8 み∟f _{cv} 70≦ <i>θ</i> 2.9
名称。 種別 対称異	とヤング係数 樹種 強度等級 {E(kN/mm ²)} からまつ E105-F300	基準強度 F(N/mm ²) 長期許容 応力度 _f(N/mm ²) 短期許容	圧縮 F _c 23.2 圧縮 _↓ f _c 8.5 圧縮	引張 F _T 20.2 引張 _↓ f _t 7.4 引張	基準強质	<u>まと許容が</u> げ 2 <u>1.6</u> げ ^{しf_{b2} 7.9}	5力度 せ/ F _{S1} 3.6 せ/ ^{しf_{S1} 1.3}	ひ断 F _{s2} 3.0 ひ断 L ^f s2 1.1	めり F 7. めり込 θ≦10 8.5 めり込	込み cv 8 →Lf _{cv} 70≦ <i>θ</i> 2.9 →Sf _{cv}
名称。 種別 対等級構成	とヤング係数 樹種 強度等級 {E(kN/mm ²)} からまつ E105-F300 {10.5}	基準強度 F(N/mm ²) 長期許容 応力度 _f(N/mm ²) 短期許容 応力度	圧縮 Fc 23.2 圧縮 _↓ f _c 8.5 圧縮 ₅f _c	引張 F _T 20.2 引張 _L f _t 7.4 引張 _s f _t	基準強度 F _{B1} 30.0 曲 L ^f b1 11.0 曲 sf _{b1}	まと許容応 げ 21.6 げ ^{Lf_{b2} 7.9 げ sf_{b2}}	5カ度 せ/ Fs1 3.6 せ/ Lfs1 1.3 すs1s1	ん断 F _{s2} 3.0 ん断 Lf _{s2} 1.1 ん断 sf _{s2}	めり F 7. めり込 θ≦10 8.5 めり2 θ≦10	込み cv 8 $a \partial L f_{cv}$ 70 $\leq \theta$ 2.9 $a \partial S f_{cv}$ 70 $\leq \theta$
名称。 種別 対称級集成 材	とヤング係数 樹種 強度等級 {E(kN/mm ²)} からまつ E105-F300 {10.5}	基準強度 F(N/mm ²) 長期許容 応力度 _f(N/mm ²) 短期許容 応力度 _f(N/mm ²)	圧縮 F _C 23.2 圧縮 〔f。 8.5 圧縮 sf。 15.5	引張 F _T 20. 2 引張 _↓ f _t 7. 4 引張 _{\$} f _t 13. 5	基準強度 F _{B1} 30.0 止f _{b1} 11.0 sf _{b1} 20.0	まと許容応 げ 75 1.6 げ ^し 7.9 げ sf _{b2} 14.4	5カ度 F _{S1} 3.6 せ/ L ^{f_{s1} 1.3 ・ s^{f_{s1}} 2.4}	ん断 F _{S2} 3.0 ん断 ^L f _{s2} 1.1 ん断 sf _{s2} 2.0	めり F 7. めり込 の≦10 8.5 めり込 の≦10 15.5	込み zv $z + Lf_{cv}$ $70 \le \theta$ 2.9 $z + S_s f_{cv}$ $70 \le \theta$ 5.2
名称。 種別 対称級構成 材	とヤング係数 樹種 強度等級 { <u>E(kN/mm²)}</u> からまつ E105-F300 {10.5} 選択	基準強度 F(N/mm ²) 長期許容 応力度 f(N/mm ²) 短応力度 sf(N/mm ²) 積 雪時	圧縮 F _c 23.2 圧縮 ^ℓ f _c 8.5 圧縮 sf _c 15.5 圧縮	引張 F _T 20.2 引張 _↓ f _t 7.4 引張 s ^f _t 13.5 引張	基準強度 F _{B1} 30.0 曲 L ^{f_{b1} 11.0 m s^{f_{b1}} 20.0 曲}	まと許容応 げ F _{B2} 21.6 げ 「 「 7.9 げ sf _{b2} 14.4 げ	5カ度 F _{S1} 3.6 せ/ L ^{f_{s1}} 1.3 せ/ s ^{f_{s1}} 2.4 せ/	ん断 F _{S2} 3.0 ん断 ^L f _{s2} 1.1 の断 ^{sf_{s2} 2.0 ん断}	めり 下 7. めり辺 日≦10 8.5 めり辺 日≦10 15.5 めり込	这み CV 8 $\Delta \mathcal{F}_L f_{CV}$ 70 $\leq \theta$ 2.9 $\Delta \mathcal{F}_S f_{CV}$ 70 $\leq \theta$ 5.2 $\mathcal{F}_{SS} f_{CV}$
名称。 種別 対称級構成 材	とヤング係数 樹種 強度等級 {E(kN/mm ²)} からまつ E105-F300 {10.5} 選択 強度 5	基準強度 F(N/mm ²) 長期 応力度 f(N/mm ²) 短応力度 sf(N/mm ²) 積雪時許 容応力度。	圧縮 F _c 23.2 圧縮 ^ℓ f _c 8.5 圧縮 sf _c 15.5 圧縮 ssf _c	引張 F _T 20.2 引張 _↓ f _t 7.4 引張 sf _t 13.5 引張 ssf _t	基準強度 F _{B1} 30.0 曲 L ^{f_{b1}} 11.0 m s ^{f_{b1}} 20.0 m ss ^{f_{b1}}	また また また また また また また また また また	5カ度 F _{S1} 3.6 せん Lf _{s1} 1.3 せん sf _{s1} 2.4 Ssf _{s1}	ひ断 F _{S2} 3.0 ひ断 ^L f _{s2} 1.1 ひ断 sf _{s2} 2.0 ひ断 Ssf _{s2}	めり F 7. めり辺 の≦10 8.5 めり辺 0≦10 15.5 めり込 0≦10	这み $\Delta \mathcal{F}_{CV}$ $\Delta \mathcal{F}_{L}f_{CV}$ $70 \le \theta$ 2.9 $\Delta \mathcal{F}_{S}f_{CV}$ $70 \le \theta$ 5.2 $\mathcal{F}_{SS}f_{CV}$ $70 \le \theta$

表 2-10 集成材の弾性係数と許容応力度

ここで、

1) 一般地域 曲げ・せん断の基準強度と許容応力度について 1は積層方向の値を示す。 2は幅方向の値を示す。 許容応力度の算定 長期 _f=1.1*F/3 短期 sf=2.0*F/3 積雪時 ssf=1.6*F/3 めり込み許容応力度の算定※θは繊維と荷重方向のなす角度[度] 長期 a)θ≦10 _Lf_{cv}=1.1*F_c/3 b) 10*<* θ <70 a)とc)の直線補間 c) 70≦ θ $_{L}f_{CV}=1.1*F_{CV}/3$ $_{s}f_{cv}=2.0*F_{c}/3$ 短期 a)θ≦10 b) 10*< θ <*70 a)とc)の直線補間 $_{s}f_{cv}=2.0*F_{cv}/3$ c) 70≦ θ 積雪時 a) θ ≦10 $s_{ss}f_{cv}=1.6*F_{c}/3$ b) 10*<* θ <70 a)とc)の直線補間 c) 70≦ θ $ssf_{cv}=1.6*F_{cv}/3$

- (4) 木造階の事務室の床梁等の長期許容応力度設計と燃えしろ設計による断面検討
- ① 床梁のたわみ

図 2-36 に全体の変形図を示す。〇囲みした検定部位の変形について、1/250 以下であることを確認 した。また、木造梁に関しては、最終たわみが 20mm 以下であることを確認した。なお、木造梁に 関してはクリープ増大係数を 2 として初期たわみに考慮した。

a. 木造梁のたわみ①

- $\delta' = \{10.5 \text{mm} (0.7 \text{mm} + 0.7 \text{mm})/2\} = 9.9 \text{mm}$
- $2\delta' / L = 2 \times 9.9 \text{ mm} / 10000 \text{ mm} = 1/510 \le 1/250 \text{ OK}$
- 2 x 10.5 mm = 21.0mm > 20mm NG→木造梁のスパンは構造芯間距離となっているが、内法 スパンのたわみで換算しなおして検定する。9.9mm × (10000mm-400mm)⁴/(10000mm)⁴ ≒ 9.9mm × 0.85 ≒ 8.42mm より、2 x {8.42 mm+(0.7mm+0.7mm)/2} = 2 x 9.12mm = 18.24mm < 20mm OK

b. 木造梁のたわみ②

- $\delta' = \{12.1 \text{mm} (0.2 \text{mm} + 3.6 \text{mm})/2\} = 10.2 \text{ mm}$
- $2\delta' / L = 2 \times 10.2 \text{ mm} / 10000 \text{ mm} = 1/490 \le 1/250 \text{ OK}$
- 2 x 12.1 mm = 24.2mm > 20mm NG →木造梁の最終撓み量 12.1mm を 10mm 以下に抑えるため に木造梁単材で 10.2mm の撓み量を 8.1mm 程度に抑える。比率的に 10.2/8.1=1.25 であり、断 面 2 次モーメントを 1.25 倍にするには、解析時の断面である 400 × 700 を 500 × 700 に断面 アップする。これより、2 階 X2 ~ X3 間は解析時 WG1 であったが WG1A に変更する。鉄骨 梁のたわみの 3.6mm にクリープ増大はないので 2 x {10.2mm/1.25+(0.2mm+3.6mm/2)/2}= 2 x 9.16mm = 18.32mm < 20mm OK
- c. 鉄骨梁のたわみ
- $\delta / L = 3.8 \text{mm} / 10000 \text{ mm} = 1/2631 \le 1/250 \text{ OK}$

図 2-36 床梁のたわみ(mm) *赤丸:木造梁 / 水色:鉄骨梁 ※検討モデルは X3 通り-X4 通り間は X2 通り-X3 通り間と同様の床組みのため省略している。

② 床梁の曲げ

図 2-37 に長期荷重時の床梁の検定部位の曲げモーメント図を示す。通常断面における長期許容応 力度以下、燃えしろ寸法を除いた断面における短期許容応力度以下であることを確認した。検定結果 を表 2-11 に示す。

	部位		Y3)	通り	Y3通り		
	構造		木ì	皆梁	鉄骨梁		
	荷重条件		長期	燃えしろ	長期		
	強度	等級	E105	-F300	SN400A		
材料	構	成	対称異等	等級構成	H-700x350x16x36		
	樹	種	カラ	マツ	-		
胀声	В	[mm]	400	200	-		
四月11日	D	[mm]	700	600	-		
設計荷重	M _d	[kNm]	148	148	308		
許容応力度	f_{b}	[N/mm ²]	11.0	20.0	156		
寸法調整係数	Kz	[-]	0.91	0.93	-		
有効断面係数	Ze	$[mm^3]$	26133333	12000000	8960000		
曲げ応力度	$\sigma_{\rm b}$	[N/mm ²]	5.66	12.33	34.38		
検定比	$\sigma_{\rm b}/(K_{\rm z} {\rm x} f_{\rm b})$	[-]	0.57	0.67	0.22		
判定	2	[-]	OK	OK	OK		

表 2-11 床梁の曲げ応力に対する検定結果

* 有効断面係数Z_eは、長期時は全断面有効時の値に一律0.8掛けした値、燃えしろ時は全断面有効時の値とした。

* 燃えしろは、火災時間120分として、断面の両側面および下面について、100mmを考慮した。

図 2-37 床梁の長期荷重時の曲げモーメント図 [kNm] *赤丸:木造梁 / 水色:鉄骨梁 ※検討モデルは X3 通り-X4 通り間は X2 通り-X3 通り間と同様の床組みのため省略している。

床梁のせん断

図 2-38 に長期荷重時の床梁の検定部位のせん断力図を示す。通常断面における長期許容応力度以下、燃えしろ寸法を除いた断面における短期許容応力度以下であることを確認した。検定結果を表 2-12 に示す。

	部位		Y2j	通り	Y2通り
	構造		木	告梁	鉄骨梁
	荷重条件		長期 燃えしろ		長期
	強度	等級	E105	-F300	SN400A
材料	構	成	対称異領	等級構成	H-700x350x16x36
	樹	種	カラ	マツ	-
紙田	В	[mm]	400	200	-
的旧时	D	[mm]	700	600	-
設計荷重	$Q_{\rm d}$	[kN]	162	162	129
許容応力度	f_{s}	[N/mm ²]	1.3	2.4	90
有効断面積	A _e	[mm ²]	224000	120000	10048
せん断応力度	σ_{s}	[N/mm ²]	1.08	2.03	12.84
検定比	$\sigma_{\rm s}/f_{\rm s}$	[-]	0.82	0.84	0.14
判定		[-]	OK	OK	OK

表 2-12 床梁のせん断応力に対する検定結果

* 有効断面係数4。は、長期時は全断面有効時の値に一律0.8掛けした値、燃えしろ時は全断面有効時の値とした。 * 燃えしろは、火災時間120分として、断面の両側面および下面について、100mmを考慮した。

図 2-38 床梁の長期荷重時のせん断力図 [kN] *赤丸:木造梁 / 水色:鉄骨梁 / 点線による赤丸: (5) で検討に用いる

※検討モデルは X3 通り-X4 通り間は X2 通り-X3 通り間と同様の床組みのため省略している。

④ 木造階の床支持柱の圧縮

図 2-39 に長期荷重時の床梁の支持柱の検定部位の反力図を示す。通常断面における長期許容応力 度以下、燃えしろ寸法を除いた断面における短期許容応力度以下であることを確認した。検定結果を 表 2-13 に示す。

	部位		Y3ì	通り		
	荷重条件		長期	燃えしろ		
	強度	等級	E95-F315			
材料	構	成	同一等	級構成		
	樹	種	カラ	マツ		
紙面	В	[mm]	450	250		
PM PH	D	[mm]	450	250		
柱長さ	L	[mm]	3800	3800		
設計荷重	N _d	[kN]	318	318		
断面二次半径	i	[mm]	130	72.3		
細長比	λ	[-]	29.2	52.6		
座屈低減係数	η	[-]	1.00	0.77		
許容応力度	$f_{\rm c}$	[N/mm ²]	9.5	17.3		
有効断面積	A _e	[mm ²]	162000	62500		
圧縮応力度	$\sigma_{ m c}$	[N/mm ²]	1.96	5.09		
検定比	$\sigma_{\rm s}/(\eta {\rm x} f_{\rm c})$	[-]	0.21	0.38		
判定	<u>t</u>	[-]	OK	OK		

表 2-13 木造階の床支持柱の圧縮応力に対する検定結果

* 有効断面係数4。は、長期時は全断面有効時の値に一律0.8掛けした値、燃えしろ時は全断面有効時の値とした。 * 燃えしろは、火災時間120分として、断面の4面について、100mmを考慮した。

図 2-39 床梁の長期荷重時の支持柱位置の反力図 [kN] * 赤丸:木造梁 / 水色:鉄骨梁 ※検討モデルは X3 通り-X4 通り間は X2 通り-X3 通り間と同様の床組みのため省略している。

⑤ 検討に用いた集成材の弾性係数と許容応力度

表 2-14 に検討に用いた集成材の弾性係数と許容応力度を示す。屋根梁の検討に用いた表を再掲している。

名称。	とヤング係数				基準強度	度と許容応	じカ度					
	樹種	其淮诰庻	圧縮	引張	曲	げ	せん	も断	めり	込み		
種別	強度等級	$\overline{\Sigma}$ (N/mm ²)	Fc	Fτ	F _{B1}	F _{B2}	F _{S1}	F _{S2}	F	CV		
	$\{E(kN/mm^2)\}$	Г (N/IIII)	26. 0	22.7	31.5	31.5	3.6	3.0	7.	8		
	からまつ	長期許容	圧縮	引張	曲げ		せん断		めり込み _L f _{cv}			
	いらよう	応力度	∟f _c	Lft	Lt ^{b1}	Lf _{b2}	∟f _{s1}	Lf _{s2}	$\theta \leq 10$	70≦ <i>θ</i>		
	E05_E215	$_{\rm L}f({\rm N/mm^2})$	9.5	8.3	11.6	11.6	1.3	1.1	9.5	2. 9		
同一等	E90-F310	短期許容	圧縮	引張	曲	げ	せん	も断	めり辺	込みsf _{cv}		
級構成	10 FJ	応力度	_s f _c	_s f _t	sf _{b1}	sf _{b2}	sf _{s1}	sf _{s2}	$\theta \leq 10$	70≦ <i>θ</i>		
集成材	[9. 5]	$_{\rm S}$ f(N/mm ²)	17.3	15. 1	21.0	21.0	2.4	2. 0	17.3	5. 2		
	選択	積雪時許	圧縮	引張	曲	げ	せん	も断	めり込	み _{ss} f _{cv}		
	強度 18	容応力度	$_{ss}f_{c}$	_{ss} f _t	_{SS} f _{b1}	$_{\rm SS}f_{\rm b2}$	_{SS} f _{s1}	_{SS} f _{s2}	$\theta \leq 10$	70≦ <i>θ</i>		
	樹種 19	$_{\rm SS}$ f(N/mm ²)	13. 9	12. 1	16. 8	16.8	1.9	1.6	13. 9	4. 2		
D 16	しょう ビオル	基準強度と許容応力度										
名称の	とヤンク係致				基準強度	度と許容応	じカ度					
名称。	とヤンク係数 樹種	其淮础度	圧縮	引張	基準強度	度と許容応 げ	む力度 せん	し断	めり	込み		
名称。 種別	<u>とヤンク係致</u> 樹種 強度等級	基準強度 F (N /mm ²)	圧縮 Fc	引張 F _T	基準強度 曲 F _{B1}	度と許容応 ∣げ │ F _{B2}	む力度 <u>せん</u> F _{S1}	し断 F _{S2}	めり F	込み cv		
名称(種別	<u>とヤンク係数</u> 樹種 強度等級 {E(kN/mm ²)}	基準強度 F(N/mm ²)	圧縮 F _c 23.2	引張 F _T 20. 2	基準強度	€と許容∩ げ F _{B2} 21.6	む力度 せん F _{s1} 3.6	び断 F _{s2} 3.0	めり F 7.	込み cv 8		
種別	とヤンク係 <u>数</u> 樹種 強度等級 {E(kN/mm ²)} からまつ	基準強度 F(N/mm ²) 長期許容	圧縮 F _c 23.2 圧縮	引張 F _T 20.2 引張	基準強度	度と許容成 If F _{B2} 21.6	い力度 サイ F _{s1} 3.6 サイ	6断 F _{s2} 3.0 6断	めり F 7. めりジ	込み cv 8 み _L f _{cv}		
種別	<u>樹種</u> 強度等級 <u>{E(kN/mm²)}</u> からまつ	基準強度 F(N/mm ²) 長期許容 応力度	圧縮 F _c 23.2 圧縮 _L f _c	引張 F _T 20.2 引張 ∟f _t	基準強度 曲 F _{B1} <u>30.0</u> 曲 _L f _{b1}	度と許容成 II F _{B2} 21.6 II II Lf _{b2}	芯力度 <u>せ</u> / F _{s1} 3.6 せ/ _L f _{s1}	ひ断 F _{s2} 3.0 ひ断 _L f _{s2}	めり F 7. めり辺 θ≦10	込み ^{cv} 8 ふみ _L f _{cv} 70≦ <i>θ</i>		
<u>名称</u> 。 種別	とヤンク係数 樹種 強度等級 {E(kN/mm ²)} からまつ E105_E300	基準強度 F (N/mm ²) 長期許容 応力度 _f (N/mm ²)	圧縮 Fc 23.2 圧縮 _L f。 8.5	引張 F _T 20.2 引張 _L f _t 7.4	基準強原 F _{B1} 30.0 血 Lf _{b1} 11.0	度と許容成 I(デ 21.6 I(デ L ^f b2 7.9	な力度 せん F _{S1} 3.6 せん Lf _{S1} 1.3	ひ断 F _{s2} 3.0 ひ断 L ^f s2 1.1	めり F 7. めり辺 θ≦10 8.5	込み cv 8 み _L f _{cv} 70 ≦ <i>θ</i> 2.9		
名称。 種別 対称異	■ 2マンク係数 樹種 強度等級 {E(kN/mm ²)} からまつ E105-F300	基準強度 F(N/mm ²) 長期許容 応力度 _f(N/mm ²) 短期許容	圧縮 F _C 23.2 圧縮 _↓ f _c 8.5 圧縮	引張 F _T 20.2 引張 _L f _t 7.4 引張	基準強质 F _{B1} 30.0 曲 〔f _{b1} 11.0	度と許容成 げ F _{B2} 1.6 げ 「f _{b2} 7.9	な力度 <u>せ</u> ん F _{S1} 3.6 せん し f _{S1} 1.3 せん	び断 F _{s2} <u>3.0</u> び断 L ^{f_{s2} <u>1.1</u> び断}	めり F 7. めり辺 θ≦10 8.5 めり辺	込み cv 8 ふみ _L f _{cv} 70≦ <i>θ</i> 2.9 ふみ _S f _{cv}		
名称。 種別 対称級集成	をヤンク係数 樹種 強度等級 {E(kN/mm ²)} からまつ E105-F300 {10.5}	基準強度 F (N/mm ²) 長期許容 応力度 f (N/mm ²) 短期許容 応力度	圧縮 F _c 23.2 圧縮 _し f _c 8.5 圧縮 sf _c	引張 F _T 20.2 引張 _L f _t 7.4 引張 _s f _t	基準強度 F _{B1} 30.0 曲 L ^f _{b1} 11.0 由 sf _{b1}	度と許容成 II 21.6 II II 1 1 1 5 8 5 b2	な力度 F _{s1} 3.6 しf _{s1} 1.3 サイ sf _{s1}	ひ断 F _{s2} <u>3.0</u> ひ断 L ^f s2 <u>1.1</u> ひ断 sf _{s2}	めり F 7. めり2 0 ≦10 8.5 めり2 0 ≦10	込み cv 8 2み _L f _{cv} 70 ≦ 0 2.9 2み _S f _{cv} 70 ≦ 0		
名称 種別 対称級集成 材	<u>樹種</u> 強度等級 {E(kN/mm ²)} からまつ E105-F300 {10.5}	基準強度 F(N/mm ²) 長期許容 応力度 _f(N/mm ²) 短期許容 応力度 _sf(N/mm ²)	圧縮 F _c 23.2 圧縮 _し f _c 8.5 圧縮 s ^f _c 15.5	引張 F _T 20.2 引張 Lf _t 7.4 引張 sf _t 13.5	基準強度 F _{B1} 30.0 曲 L ^f b1 11.0 曲 s ^f b1 20.0	度と許容成 II 21.6 II II 1 5 2 1 6 1 5 1 2 1 4.4	な力度 せ/ F _{s1} 3.6 しf _{s1} 1.3 せ/ sf _{s1} 2.4	ひ断 F _{s2} <u>3.0</u> ひ断 L ^f s2 <u>1.1</u> ひ断 s ^f s2 <u>2.0</u>	めり F 7. めり2 0 ≦10 8.5 めり2 0 ≦10 15.5	込み cv 8 ろみ _L f _{cv} 70 ≦ 0 2.9 ふみ _S f _{cv} 70 ≦ 0 5.2		
名称 種別 対称級集成 材	<u>樹種</u> 強度等級 [E (kN/mm ²)] からまつ E105-F300 {10.5} 選択	基準強度 F(N/mm ²) 長期許容 応力度 f(N/mm ²) 短応力度 sf(N/mm ²) 積	圧縮 F _c 23.2 正縮 _L f _c 8.5 圧縮 sf _c 15.5 圧縮	引張 F _T 20.2 引張 _↓ f _t 7.4 引張 s ^f t 13.5 引張	基準強度 F _{B1} 30.0 曲 L ^f b1 11.0 曲 s ^f b1 20.0 曲	度と許容成 (げ 「 」 (げ し 「 た 21.6 (げ 「 よ ち ら 2 (り た 2 1 4 .4 (1 げ (げ) (げ) (げ) (げ) (げ) (げ) (げ) (げ) (げ) (げ) (げ) (げ) () (5カ度 F _{S1} 3.6 L ^f s1 1.3 せん sf _{S1} 2.4 せん	ひ断 F _{s2} 3.0 ひ断 L ^f s2 1.1 ひ断 sf _{s2} 2.0 ひ断	めり F 7. めり2 0 ≦10 8.5 めり2 0 ≦10 15.5 めり込	这み cv 8 $\Delta \mathcal{H}_{L}f_{CV}$ 70 $\leq \theta$ 2.9 $\Delta \mathcal{H}_{S}f_{CV}$ 70 $\leq \theta$ 5.2 $\mathcal{H}_{SS}f_{CV}$		
名林 種別 対等成集成 材	<u>とヤンク保数</u> 樹種 強度等級 [E(kN/mm ²)] からまつ E105-F300 {10.5} 選択 強度 5	基準強度 F(N/mm ²) 長応力度 f(N/mm ²) 短応力度 sf(N/mm ²) 積容の力 gf(N/mm ²)	圧縮 F _c 23.2 正縮 ^L f _c 8.5 圧縮 sf _c 15.5 圧縮 ssf _c	引張 F _T 20.2 引張 Lf _t 7.4 引張 sf _t 13.5 引張 ssf _t	基準強度 F _{B1} 30.0 曲 L ^f b1 11.0 雪 sf _{b1} 20.0 雪 ss ^f b1	度と許容成 If F _{B2} 21.6 If Lf _{b2} 7.9 If sf _{b2} 14.4 If ssf _{b2}	5カ度 F _{S1} 3.6 Lf _{S1} 1.3 せん Sf _{S1} 2.4 SSf _{S1}	ひ断 F _{S2} 3.0 ひ断 L ^f s2 1.1 ひ断 sf _{S2} 2.0 ひ断 ssf _{s2}	めり F 7. めり2 θ≦10 8.5 めり2 θ≦10 15.5 めり2 0≦10	这み cv 8 $\Delta \mathcal{H}_{L}f_{CV}$ 70 $\leq \theta$ 2.9 $\Delta \mathcal{H}_{S}f_{CV}$ 70 $\leq \theta$ 5.2 70 $\leq \theta$		

表 2-14 集成材の弾性係数と許容応力度

ここで、

1) 一般地域 曲げ・せん断の基準強度と許容応力度について 1は積層方向の値を示す。 2は幅方向の値を示す。 許容応力度の算定 長期 _f=1.1*F/3 短期 sf=2.0*F/3 積雪時 ssf=1.6*F/3 めり込み許容応力度の算定※θは繊維と荷重方向のなす角度[度] a) $\theta \leq 10$ b) $10 < \theta < 70$ c) ψ_{L} f_{CV}=1. 1*F_{CV}/3 f = -2. 0*F_C/3 長期 a) $\theta \leq 10$ Lf_{CV}=1.1*F_C/3 a)とc)の直線補間 短期 a)θ≦10 b) 10*<* θ <70 a)とc)の直線補間 _sf_{cv}=2.0*F_{cv}/3 c) 70≦ θ $_{ss}f_{cv}=1.6*F_{c}/3$ 積雪時 a)θ≦10 b) 10*<* θ <70 a)とc)の直線補間 c) 70≦ θ $_{ss}f_{cv}=1.6*F_{cv}/3$

(5) 木造階の長期荷重時の梁端部接合部の検討

① RC 柱-木造梁接合部

図 2-40 に検定部位を示す。設計条件は下記の通りである。a~c についての検討を示す。

- 設計用長期せん断力: LQ_=64 kN (図 2-38 中の解析応力を参照)
- 梁受け金物の下端受けプレート: PL-16×200×150→受圧面積: A=200×150=30000mm²、
 単位長さ当りの面外曲げ断面係数 Z=(16mm)²/6=42666mm³/m
- a. 下端受けプレート部のめり込み応力度の検討
- 長期めり込み許容応力度:カラマツ:E105-F300→_Lf_{ev}=6.6×1.1/3=2.45N/mm²(AIJ 材端のめり込み基準強度より)
- ・ 設計用めり込み応力度 $_{L}\sigma_{cv}=_{L}Q_{d}/A=64kN/30000mm^{2}=2.13N/mm^{2}$
- 検定 $_{\rm L}\sigma_{\rm cv}/_{\rm L}f_{\rm cv}=2.13$ N/mm²/2.45 N/mm²=0.87 <1 OK
- b. 下端受けプレートの面外曲げ応力に対する検討
- 長期許容応力度: SS400 → Lfb=156N/mm²
- ・ 設計用曲げ応力度:2隣辺固定2辺自由の板の支持条件より最大曲げモーメント_L M_x =4.6kNm/m、_L M_y ==6.0kNm/m うちの大きい方を用いて、_L σ_b =_L M_y /Z=6.0kNm/m/(42666mm³/m) =140N/mm²
- & & & & & & $h_{\rm b}^{-140\rm N/mm^{2}/156\rm N/mm^{2}=0.90 < 1$ OK
- c. ボルトのせん断耐力の検討
- 4-M16 ボルト (SS400 相当、ネジ部断面積 157mm²)の長期許容せん断耐力_LQ_a = 4 x 2/3 x 0.7 x 235N/mm² x 157mm²=68.8kN (各種合成構造設計指針・同解説)

② 木梁-木梁接合部

図 2-41 に検定部位を示す。設計条件は下記の通りである。a~c についての検討を示す。

- 設計用長期せん断力: LQ=56 kN (図 2-38、応力の部位は異なるが安全側)
- ・ 梁受け金物の下端受けプレート: PL-16×200×150→受圧面積: A=200×150=30000mm²、 単位長さ当りの面外曲げ断面係数 Z=(16mm)²/6=42666mm³/m
- 梁受け金物の上端受けプレート: PL-16×150×150→受圧面積: A=150×150=22500mm²
- a. 下端受けプレート部のめり込み応力度の検討
- 長期めり込み許容応力度:カラマツ:E105-F300→_Lf_{ev}=6.6N/mm²×1.1/3=2.45N/mm² (AIJ 材 端のめり込み基準強度より)
- ・ 設計用めり込み応力度 $_{L}\sigma_{cv}=_{L}Q_{d}/A=56kN/30000mm^{2}=1.87N/mm^{2}$
- 検定 $_{\rm L}\sigma_{\rm cv}/_{\rm L}f_{\rm cv}=1.87$ N/mm²/2.45 N/mm²=0.76 <1 OK
- b. 下端受けプレートの面外曲げ応力に対する検討
- 長期許容応力度: $SS400 \rightarrow L_{f_b}=156N/mm^2$
- ・ 設計用曲げ応力度:2隣辺固定2辺自由の板の支持条件より最大曲げモーメント_L M_x =4.0kNm/m、_L M_y =5.2kNm/m うちの大きい方を用いて、_L σ_b =_L M_y /Z=5.2kNm/m/(42666mm³/m) =122N/mm²
- c. 上端腰掛けプレート部のめり込み応力度の検討
- 長期めり込み許容応力度:カラマツ:E105-F300→_Lf_{ev}= 8.1N/mm²×1.1/3=2.97N/mm² (AIJ 材中間部のめり込み基準強度より)
- ・ 設計用めり込み応力度 $_{L}\sigma_{cv}=_{L}Q_{d}/A=56kN/22500mm^{2}=2.49N/mm^{2}$
- 検定 $_{\rm L}\sigma_{\rm cv}/_{\rm L}f_{\rm cv}$ =2.49N/mm²/2.97N/mm²=0.84 <1 OK

図 2-41 木梁-木梁接合部

③ 鉄骨梁-木造梁接合部

図 2-42 に検定部位を示す。設計条件は下記の通りである。a、b についての検討を示す。

- 設計用長期せん断力:_LQ_d=56 kN (図 2-38)
- 梁受け金物の下端受けプレート: PL-16×200×150→受圧面積: A=200×150=30000mm²、 面外曲げ断面係数 Z=200mm x (16mm)²/6=8533mm³
- a. 下端受けプレート部のめり込み応力度の検討
- 長期めり込み許容応力度:カラマツ:E105-F300→_Lf_{ev}=6.6N/mm²×1.1/3=2.45N/mm²(AIJ 材 端のめり込み基準強度より)
- ・ 設計用めり込み応力度 $_{L}\sigma_{cv}=_{L}Q_{d}/A=56kN/30000mm^{2}=1.87N/mm^{2}$
- 検定 $_{\rm L}\sigma_{\rm cv}/_{\rm L}f_{\rm cv}=1.87$ N/mm²/2.45N/mm²=0.76 <1 OK
- b. 下端受けプレートの面外曲げ応力に対する検討
- 長期許容応力度: SS400 $\rightarrow_{L} f_{b} = 156 \text{N/mm}^{2}$
- 設計用曲げ応力度:等分布荷重を受ける G.PL からの片持ち梁と考えて、最大曲げモーメント _LM=(_LQ_d/150mm) x (150mm/2)²/2 = (56kN/150mm) x (5625mm²)/2 = 1.05kNm と計算される ため、設計用曲げ応力度は_Lσ_{b=L}M/Z=1.05kNm/(8533mm³) =123N/mm²
- & & & & & & $h_{\rm b} = 122 \text{N/mm}^2 / 156 \text{N/mm}^2 = 0.78 < 1 \text{OK}$

図 2-42 鉄骨梁-木造梁接合部

図 2-43 に検定部位を示す。設計条件は下記の通りである。a、b についての検討を示す。

- 設計用長期せん断力: LQd=129 kN (図 2-38)
- ガセットプレート (SS400) のせん断面積: A=9mm × (440mm 7 x 18mm)=2826mm²、面外 曲げ断面係数 Z=200mm x (16mm)²/6=8533mm³
- 高力ボルト:M16(F8T 溶融亜鉛めっき高力ボルト)の長期許容せん断耐力(1 面摩擦):21.4 kN/本
- a. 高力ボルト接合部の検討
- ・ 7-M16 ボルトの長期許容せん断耐力: $_{L}Q_{a}$ =7 x 21.4kN=149.8kN > $_{L}Q_{d}$ =129kN OK
- b. ガセットプレート(G.PL)の断面検討
- ・ 設計用せん断応力度は $_L\sigma_s=_LQ_d/A=129kN/(2826mm^2)=45.6N/mm^2$
- 検定 Log/Lfs=45.6N/mm²/90N/mm²=0.51 <1 OK

図 2-43 RC 柱-鉄骨梁接合部

(6) 木造屋根および木造事務室屋根面の Y 方向地震時の設計用外力と検討方針

① 設計用の局部震度

木造屋根および木造床のY方向地震時の面内せん断力の検討に使用する局部震度を算出した結果 を表 2-15 と表 2-16 に示す。なお、下表の値は、端数の切り上げ等により「(2)保有水平耐力計算」 で示した値と厳密には一致していない。

階	Wi	Σwi	αi	Ai	Ci	Qi	Pi	床仕様	局部震度:Ki	
	(kN)	(kN)				(kN)	(kN)		=Pi/Wi	
ペントハウス	1326	1326	-	-	-	1326	1326	RC床	1.00	
5F	18547	19873	0.126	2.025	0.405	8049	6723	木造屋根	0.36	←屋根
4F	42005	61878	0.392	1.459	0.292	18056	10007	RC床	0.24	
3F	25642	87520	0.555	1.300	0.260	22755	4699	木造床	0.18	←床
2F	42399	129919	0.824	1.106	0.221	28738	5983	RC床	0.14	
1 F	27836	157755	1.000	1.000	0.200	31551	2813	木造床	0.10	

表 2-15 短期地震時の局部震度

表 2-16 保有水平耐力時の局部震度と局部震度比

階	種別	Ds値	Fes値	Qud	Qun	Qu	Qu/Qud	判定	Rqu	Pui	Wi	局部震度:Kui	床仕様	Kui/Ki	
				(kN)	(kN)	(kN)				(kN)	(kN)	=Pui/Wi			
5F	RC	0.45	1.000	40241	18108	24973	1.38	OK	1/590	24973	18547	1.35	木造屋根	3.71	←屋根
4F	RC	0.55	1.000	90258	49642	56017	1.13	OK	1/230	31044	42005	0.74	RC床	3.10	
3F	RC	0.55	1.000	113775	62576	70612	1.13	OK	1/192	14595	25642	0.57	木造床	3.11	←床
2F	RC	0.55	1.000	143692	79031	89171	1.13	OK	1/154	18559	42399	0.44	RC床	3.10	
1 F	RC	0.55	1.000	157756	86766	97907	1.13	OK	1/234	8736	27836	0.31	木造床	3.11	

後討方針

上記の局部震度を用いて、最上階の木造屋根面と4階木造床面の面内せん断性能を検討する。検討 内容は下記の通りである。なお、屋根面および床面の面内せん断性能は7.84kN/m(=1.96kN/m/倍 x 床倍率4倍)と仮定して、ブレース置換してモデル化して検討する。

- 短期地震時において、屋根面と床面の面内せん断変形が RC 耐震壁と RC ラーメン柱で構成される鉛直構面間スパンを基準として 1/150 以下であることを確認する。
- 短期地震時において、単位長さ当たりの面内せん断応力が床倍率で 7.84kN/m(床倍率4倍) 以下であることを確認する。
- 保有水平耐力時において、局部震度比より算出される必要な面内せん断耐力を確認する。
- 短期時、保有水平耐力時の必要な面内せん断耐力を発揮時に、各接合部に生じる応力が耐力 を下回っていることを確認する。

(7) 木造屋根面の Y 方向地震時の面内せん断力に対する検討

図 2-44 に検討モデル図、図 2-45 に短期地震時の変形図、図 2-46 に短期地震時の反力図を示す。

- a. 構面間の変形
- $\delta' = \{10.4 \text{mm} (5.0 \text{mm} + 5.1 \text{mm})/2\} = 5.35 \text{mm}$
- $\delta' / L = 5.35 \text{mm} / 10000 \text{mm} = 1 / 1869 \le 150 \text{ OK}$
- b. 短期許容面内せん断耐力

-1 左側 RC コア際部

- 左側 RC コアの総反力 Q_{L1} = (65.7kN+12.6kN+23.1kN) x 2 + 12.7kN = 215.5kN
- RC 大梁の弱軸せん断力(解析結果より)Q_{L2} = 59.4kN x 2 = 118.8kN
- ・ 屋根面の負担せん断力 Q_L = Q_{L1} Q_{L2} = 215.5kN 118.8kN = 96.7kN
 →単位長さ当たりの負担せん断力 Δ Q_L = Q_L / L = 96.7kN / 30m = 3.22kN/m < 7.84kN/m OK</p>

-2 右側 RC コア際部

- 左側 RC コアの総反力 Q_{R1} = (53.6kN+10.1kN+13.3kN) x 2 = 154kN
- RC 大梁の弱軸せん断力(解析結果より)Q_{R2}=48.5kN x 2=97kN
- ・ 屋根面の負担せん断力 $Q_R = Q_{R1} Q_{R2} = 154$ kN 97kN = 57kN →単位長さ当たりの負担せん断力 $\Delta Q_R = Q_R / L = 57$ kN / 20m = 2.85kN/m < 7.84kN/m OK

c. 保有水平耐力時の面内せん断耐力

- 水平震度比 Kui/Ki = 3.71
- 保有水平耐力時に必要な面内せん断耐力 Δ Qu = max [Δ Q_L, Δ Q_R] x 3.71 = 3.22kN/m x 3.71 = <u>11.95kN/m</u>

B.構造分野

図 2-46 屋根構面の短期地震時の反力図(kN)

(8) 木造階事務室床面の Y 方向地震時の面内せん断力に対する検討

図 2-47 に検討モデル図、図 2-48 に短期地震時の変形図、図 2-49 に短期地震時の反力図を示す。

- a. 構面間の変形
- $\delta' = \{9.5 \text{mm} (1.8 \text{mm} + 1.8 \text{mm})/2\} = 7.7 \text{mm}$
- $\delta' / L = 7.7 \text{mm} / 10000 \text{mm} = 1 / 1299 \le 150 \text{ OK}$
- b. 短期許容面内せん断耐力
- RC コアの総反力 Q₁ = (13.7kN+17.4kN+7.3kN+7.3kN+7.3kN+7.3kN) x 2 + 7.3kN = 127.9kN
- 屋根面の負担せん断力Q=Q₁=127.9kN
 - →単位長さ当たりの負担せん断力 Δ Q = Q / L = 127.9kN / 30m = 4.26kN/m < 7.84kN/m OK
- c. 保有水平耐力時の面内せん断耐力
- 局部震度比 Kui/Ki = 3.11
- ・ 保有水平耐力時に必要な面内せん断耐力 Δ Qu = Δ Q x 3.11 = 4.26kN/m x 3.11 = 13.25kN/m
- d. 床梁端部の鋼板挿入ドリフトピン接合部に生じる引張軸力に対する検討
- 径 16mm/長さ L=195mm(C3)の繊維方向の鋼板挿入ドリフトピン接合部の1本あたりの降伏 せん断耐力 py=37.0kN、終局強度比は ru=1.0、荷重方向にピンが並ばないので jKn=1.0、降伏 モードはモード III なので jKr=0.9 より、4本で構成される接合部の短期許容せん断耐力は sPa = 2 x 1 x 1/2 x 2/3 x jKr x n x ru x py = 2/3 x 0.9 x 4 x 1.0 x 37.0kN = 88.8kN
- 短期地震時の梁軸力図より、短期時の梁端接合部に生じる設計用引張力 sTd = 32.0kN
 → sTd / sPa = 32.0kN / 88.8kN = 0.36 < 1.0 OK
- 保有水平耐力時は、設計応力が局部震度比分の割増しがされ、耐力は 1.5 倍の割増しされる。
 → sTud / sPu = 32.0kN x 3.11 / (88.8kN x 1.5) = 99.52kN / 133.2kN = 0.74 < 1.0 OK
- e. RC コアと木造床の接合部(図 2-19)の検討
- -1 Lアングルのアンカーボルト(A. BOLT)による接合部
- M12 A.BOLT (SS400) の1本当りの短期許容せん断耐力: 135N/mm² x 84.3mm² = 11.38kN/本
- 1m ピッチに1本配置されることより単位長さ当たりの短期許容せん断耐力 sqa = 11.83kN/m →ΔQ / sqa = 4.26kN/m / 11.38kN/m = 0.37 < 1.0 OK
- 保有水平耐力時は、耐力が 400N/mm² / 235N/mm²=1.7 倍、応力が 3.11 倍される。
 → Δ Qu / gu = 13.25kN/m / (11.38kN/m x 1.7) = 0.68 < 1.0 OK

図 2-47 床構面の検討モデル図

- -2 L アングルと CLT 板のビス接合部
- ビス接合部 (パネリード鋼: PK8-90) の1本当りの短期許容せん断耐力: 5.18kN/本、終局せん 断耐力: 10.0kN/本 (メーカ資料より)
- ・ 500mm ピッチに 1 本配置し単位長さ当たりの短期許容せん断耐力 $sq_2a = 10.36$ kN/m → Δ Q / $sq_2a = 4.26$ kN/m / 10.36kN/m = 0.41 < 1.0 OK
- 保有水平耐力時は、単位長さ当りの最大せん断耐力は 20.0kN/m、応力は 3.11 倍される。
 - $\rightarrow\Delta~Qu$ / qu = 13.25kN/m / 20.0kN/m = 0.66 \leq 1.0 ~ OK

図 2-48 床構面の短期地震時の変形図 (mm)

図 2-49 床構面の短期地震時の反力図(kN)

図 2-50 床構面の短期地震時の梁軸力図(kN)

3 プロトタイプⅡ関連の構造設計に関する技術資料

3.1 RC+CLT 袖壁

ここでは、プロトタイプⅡを対象に、設計マニュアルとして構造計算の考え方や方法を提示する。 なお、提案した構造計算法の根拠となる加力実験や加力実験を対象とした数値解析の詳細、CLT 袖壁 の設置に関する施工資料については、参考資料の実験報告*を参照されたい。

また、RC ラーメンと CLT 耐力壁を組み合わせた構造形式についても、別途、加力実験を行っている。現状では設計マニュアルの整理には至っていないが、今後の検証を進める上で有益な実験データ が収集されている。本資料では、参考資料として実験結果*を整理しているので、こちらも必要に応じ て参照されたい。

※本研究報告には収録していないが、国土技術政策総合研究所 HP において公表している。

3.1.1 本資料の構成

3.1.2 では、本マニュアルで提案する構造計算法の根拠となった部材実験および架構実験の概要を説 明している。また、3.1.3 では、本マニュアルで提案する構造設計法で対象とする架構形式や接合方法 を示している。3.1.4 では、保有水平耐力計算もしくは限界耐力計算を行う際の CLT 袖壁付き RC ラー メンにおける各部材のモデル化の方法を示している。

保有水平耐力計算を行う場合の部材種別判定や構造特性係数の設定、保証設計の具体的な方法については、3.1.5、3.1.6、3.1.7、3.1.8、3.1.9 で説明を行っている。現状では、安全側の考え方に基づいて設計手法の提案、整理を行っているため、本マニュアルで示した手法がやや過大な要求となっている可能性もあるが、より合理的な設計手法の提案については、今後の研究成果の蓄積を待ちたい。また、3.1.10 には、限界耐力計算に基づいた構造計算を行う場合に必要となる変形性能や減衰についての考え方を示している。後述するように、対象とする CLT 袖壁付き RC ラーメンでは、通常の RC ラーメンと比較して、崩壊機構形成後の荷重変形関係上の荷重増分が大きくなる傾向があるため、保有水平耐力計算において保証設計を行うとどうしても不合理な部分が出てくる。地震時の応答変形を直接的に評価する限界耐力計算では、このような挙動にも柔軟に対応できるため、より合理的な設計を実現できる可能性がある。3.1.11 では、CLT 袖壁と RC ラーメンとの接合方法に関する知見を整理している。また、3.1.12 では、CLT 袖壁付き RC ラーメンの設計例を掲載しており、本マニュアルで提案した手法に基づいて、構造計算を行った結果を示している。

3.1.2 部材実験及び架構実験の概要

本マニュアルで提案する構造計算法の根拠となる部材実験および架構実験の概要を簡単に紹介する。 部材実験は、表 3.1.1、図 3.1.1 に示すように、縮尺が 2/3 となる RC 柱試験体(断面寸法:450mm× 450mm)の両側に CLT 袖壁(S60-3-3 もしくは S60-3-4、袖壁せい 650mm)を取り付けたものであり、 RC 柱-CLT 袖壁間の接合方法や、図 3.1.2 に示す加力方法が実験変数となっている。

片持ち柱形式の試験体 AS、BS では、図 3.1.4 に示す CLT 袖壁の曲げ圧縮破壊が生じたため、図 3.1.3 に示すように、*R*=1/50rad 以降は若干の耐力低下が見られるが、実験終了時でも最大耐力の 8 割以上の 耐力を保持していた。また、逆対称載荷を行った試験体 AD では、CLT 袖壁のラミナ間でずれが生じ るせん断降伏が確認されたが、試験体 AS、BS よりも耐力低下の割合は小さく、実験終了時でも最大 耐力の 9 割程度の耐力を保持していた。試験体 AS、AD では、図 3.1.4 に示すような水平接合材(山 形鋼)と CLT 袖壁の間の接着面にずれが生じ、水平接合部に設置したアンカーボルトの引張ひずみが

B-75

B.構造分野

頭打ちとなる課題もあったが、袖壁の損傷によって、大きな耐力低下を示す従来の RC 袖壁付き柱と 比較して、極めて靭性に富む挙動を示すことが確認されている。CLT 袖壁による RC 柱の最大耐力の 増大効果は 2.0~2.6 倍(RC 柱の曲げ終局強度時のせん断力の計算値と比較)程度である。

表 3.1.1 部材実験の試験体の諸元

B.構造分野

図3.1.3 部材実験の荷重変形関係

(a) 試験体 AS

(b) 試験体 BS

(c) 試験体 AD 図 3.1.4 部材実験の損傷状況(*P*=1/20rad 時)

架構実験は、表 3.1.2、図 3.1.5 に示すように、縮尺が 2/3 となる 2 層 1 スパンの RC ラーメン(柱断面寸法:400mm×400mm、梁断面寸法:300mm×400mm)に、CLT 袖壁(S60-3-4、袖壁せい 650mm)を取り付けたものであり、試験体 A では RC-CLT 間に鋼板挿入ドリフトピン接合が、試験体 B では滑り止めが配置されている。試験体 C は比較用の RC ラーメン試験体である。実験では、図 3.1.6 に示すように、2 本の水平ジャッキを用いて、左右 2 本の柱に均等な水平荷重を作用させている。実験では、いずれの試験体でも、設計時の想定通りに、1 階柱脚および各階のはり端において塑性ヒンジが形成される全体崩壊機構が形成されることを確認している。

試験	4	57h	之山 居奈	水平接合部			鉛直接合部			充填	
体名	柱	*	相望	金物	RC−金物	金物−CLT	金物	RC−金物	金物CLT	水平接合部	鉛直接合部
А	400mm × 400mm	300mm × 400mm		T形金物 (SS400)	アンカー ボルト 2-M16 (ABR490B)	ドリフトピン 18-Φ12 (SS400)	T形金物 (SS400)	ボルト 12-M16 (S45C)	ドリフトピン 25-Φ12 (SS400)		
в	主筋 16-D16 (SD345) p _g =1.99% 帯筋 4-D10@100 (SD295A)p _w =0.71%	上,下端筋4-D16 (SD345)p _t =0.74% 帯筋 2-D10@100 (SD295A)p _w =0.48%	120mm × 640mm (S60-3-4)	滑り止め (SS400)	ボルト 4-M20 (S45C)	支圧		なし		無収縮 モルタル	不陸調整 モルタル
0			<i>t</i> >1		<i>t</i> c1					<i>t</i> :	1

表 3.1.2 架構実験の試験体の諸元

図 3.1.8 に示すように、試験体 A では、*R*=1/25rad サイクルにおいて、水平接合部の鋼板挿入ドリフ トピン付近でラミナの破断が生じたが、試験体 B では、CLT 袖壁の上下に充填した無収縮モルタルの 破壊が先行したことにより、CLT 袖壁の端部に局所的な圧縮しわや亀裂は見られたものの、実験終了 時まで顕著な損傷は見られなかった。そのため、図 3.1.7 の荷重変形関係に示すように、いずれの試験 体でも *R*=1/33rad サイクルまで繰り返し載荷による水平荷重の低下は見られず、袖壁の損傷によって 大きな耐力低下を示す従来の RC 袖壁付き架構と比較して、極めて靱性に富む挙動を示した。

試験体 A、B では試験体 C と比較して水平剛性が高く、試験体 A、B の初期剛性は、試験体 C のそ れぞれ 1.68 倍、1.61 倍、また、試験体 A、B の最大耐力は、試験体 C のそれぞれ 1.79 倍、1.47 倍とな り、いずれの試験体でも CLT 袖壁による補強効果が確認されている。これは、部材実験で確認された RC 柱の補強効果に加え、図 3.1.10 に示す大変形時の変形状況からも明らかなように、CLT 袖壁を設 置した試験体では、RC 柱フェイス位置から CLT 袖壁フェイス位置近傍に RC はりの塑性ヒンジの形 成位置が移動するヒンジリロケーション効果によるものと考えられる。ヒンジリロケーションの効果 は、RC-CLT 間を金物で接合した試験体 A の方が滑り止めのみを設置した試験体 B よりも大きい。 試験体 A、B の水平剛性や最大耐力が試験体 C よりも高い値を示したことから、CLT 袖壁を挿入する ことで、RC ラーメンの地震時の応答変位や損傷を低減する効果が期待できる。一方で、図 3.1.9 に示 すように、*R*=1/100rad の変形角付近までは、RC はりの損傷状況(最大ひび割れ幅や残留ひび割れ幅含 む)に、試験体間の差はほとんど見られず、CLT 袖壁を設置することで、小変形時の損傷状況が不利 になることはなかった。

(a) 試験体 A

(b) 試験体 B 図 3.1.8 架構実験の損傷状況(*P*=1/25rad 時)

図 3. 1. 10 架構実験の損傷状況(*P*=1/25rad 時)

3.1.3 基本方針

(a) 構造計算における基本的な考え方

本マニュアルでは、全体崩壊形を形成する RC ラーメンを対象に、同架構に CLT 袖壁を挿入する際 の構造設計の考え方を示している。RC と木質材料を組み合わせた混構造建築物に関する研究事例や 設計実績が現状では少なく、構造設計の考え方が十分に整理されていないことを踏まえ、ここでは最 低限必要な耐震性能(例えば、保有水平耐力計算では、*D*s=0.3 相当の保有水平耐力)は RC ラーメン のみで確保し、CLT 袖壁を追加の耐震要素として付与する場合の考え方を示す。なお、柱やはりに取 り付く壁部材を耐震要素として活用し、建築物の剛性や耐力を高める考え方としては、国土技術政策 総合研究所が過去に実施した災害拠点総合プロジェクト^[3.1.1]における考え方が参考になる。

図 3.1.11 に示すように、災害拠点総合プロジェクトでは、過大な入力に対する安全性として、極希 地震と比較して 1.25 倍や 1.5 倍のエネルギー吸収能を確保することを目的として、現行の保有水平耐 力計算を満足する柱はりのフレームに、袖壁・腰壁・垂壁を活用して保有水平耐力を大幅に向上させ、 それによって応答変形を減らし被災度を低減させる工法を提案している。耐震ランク I は RC ラーメ ンに取り付く袖壁、腰壁、垂壁の剛性、耐力を全て活用する強度型の設計方針である。耐震ランク II は袖壁と腰壁、垂壁の間にスリットを設けることで、腰壁、垂壁については剛性のみを、袖壁につい ては剛性、耐力を活用する靱性型の設計方針である。

本マニュアルでは、CLT部材の剛性が RC 部材と比較して小さく、CLT部材に応力負担をさせるためには、架構の水平変形がある程度必要となること、また、CLTの袖壁、腰壁、垂壁を組み合わせて用いる場合、モデル化等が煩雑となり、破壊形式や負担応力の推定が困難となる可能性があることから、耐震ランクIIに木質混構造に適用することを目標とし、RC 造ラーメンに CLT袖壁を挿入する架構形式を対象としている。図 3.1.12の構造計算フローに示すように、耐震ランクIIでは、壁を取り除いた柱はり架構に対して通常の保有水平耐力計算を行った上で、壁付き架構に対して、ベースシア係数 0.4 に達する時点で、各層の最大層間変形角が 1/200 以下、部材塑性率が 2 以下、全体崩壊形の形成の 3 点を確認した上で、保有水平耐力の確認を行う流れとなっている。

なお、袖壁を RC から CLT に変更した場合に想定される利点と欠点の一例を以下に示す。

(利点)

・CLT 袖壁は RC 袖壁と比較して軽量であり、地震時の慣性力が低減できる。

・RC 袖壁の場合、コンクリートの剥落、圧壊が比較的小さい変形で発生するのに対し、CLT 袖 壁は大変形時まで損傷が目立ちにくく、比較的ねばりのある挙動を示す。

・将来の用途変更や地震等で損傷を受けた場合に、CLT 袖壁は取り換えが容易に行える。

(欠点)

- ・RC 袖壁と比較して CLT 袖壁は剛性が低く、接合部分においてめり込み等が生じるため、水平 耐力を発揮するために大きな変形が必要となる。
- ・CLT 袖壁は大変形時まで弾性的な挙動を示すため、アンカーボルト等のエネルギー消費要素の 有無にもよるが、RC 袖壁と比較して、減衰が小さくなる可能性がある。
- ・RC 柱-CLT 袖壁間の鉛直接合部、RC はり、基礎はり-CLT 袖壁間の水平接合部に関する設計、施工時の配慮が必要となる。

図3.1.12 災害拠点総合プロジェクトにおける耐震ランクI、Iの構造計算フロー^[3.1.1]

(b) 対象とする架構形式

本マニュアルでは、3.1.2 で示したように、部材実験において RC 柱の両側に CLT 袖壁を設けた場合 の挙動を、架構実験において RC 柱の片側に CLT 袖壁を設けた場合の挙動を確認しているが、後述す る数値解析による検証でも、実験時の挙動を比較的精度良く予測できていることから、RC 柱に取り 付ける CLT 袖壁は、片側、両側のいずれとしてもよい。

一方、RC ラーメンに CLT 袖壁を取り付ける位置については、図 3.1.13 から図 3.1.16 に示すように 様々なパターンが考えられるが、本マニュアルでは、3.1.2 で示した架構実験において、CLT 袖壁が 1、 2 階に連続的に配置された場合しか検討を行っていないこと、また、地震時の応答変形を直接評価す る限界耐力計算だけでなく、地震時の応答変形が陽に評価されない保有水平耐力計算による構造計算 も対象としていることから、図 3.1.13、図 3.1.14 に示すように、構面内の全てのスパンもしくは一部 のスパンにおいて、全ての層に CLT 袖壁が設置される、地震時の挙動の推定が比較的容易で、構造的 に明解な場合を主な対象としている。また、前述した耐震ランク II と同様に、本マニュアルでは全体 崩壊形の形成を目指しているため、CLT 袖壁の設置によって、各階の水平剛性のバランスが悪くなる ことを避けることも意図している。

なお、図 3.1.15 に示すように、下階のみに CLT 袖壁を設置し、上階には CLT 袖壁を設置しない場 合については、上階に生じる変形が過大となり、部分崩壊形が形成されないように十分に配慮する必 要はあるが、全体崩壊形が形成された上で、CLT 袖壁を設置することで下階の変形が抑制され、全層 の変形を均一化する目的で使用される場合については、本マニュアルの対象とする。

一方、図 3.1.16 に示すように、上階のみに CLT 袖壁を設置し、下階には CLT 袖壁を設置しない場 合には、下階の水平剛性が低い、いわゆるピロティ形式の構造となるため、地震時の変形が CLT 袖壁 を設置していない下階に集中し、層崩壊形が形成される可能性がある。RC ラーメンに CLT 袖壁を設 けた構造形式の靭性やエネルギー消費能力については未だ不明な点も多く、地震時の挙動を精度良く 再現するためには、時刻歴応答解析等のより詳細な検討を行う必要があるものと考えられる。全体崩 壊形が形成されるように各部の設計を行うことは可能と考えられるが、本マニュアルでは、保有水平 耐力計算もしくは限界耐力計算による構造計算を行うことを基本としていることから、ここでは対象 外としている。

図 3.1.13 本マニュアルで対象とする CLT 袖壁の配置 (構面内の全てのスパン,全ての層に CLT 袖壁を設置する場合)

図 3.1.14 本マニュアルで対象とする CLT 袖壁の配置 (構面内の一部のスパン,全ての層に CLT 袖壁を設置する場合)

図 3.1.15 本マニュアルで対象とする CLT 袖壁の配置 (構面内の下層のみに CLT 袖壁を設置する場合)

図 3.1.16 本マニュアルでは対象外としない CLT 袖壁の配置 (構面内の上層のみに CLT 袖壁を設置する場合)

(c) 対象とする接合方法

RC ラーメンの変形が小さい状態において、CLT 袖壁の応力負担を増大させるためには、RC 部材-CLT 袖壁間の接合要素で生じるずれや離間を小さくし、可能な限り両者が一体に近い形で挙動させる ことが望ましい。一方で、接合部を設置することで、解析モデルや構造設計上の取り扱いが複雑とな ること、また、接合部の剛性や耐力を増大させることで、接合金物の製作費や施工費の増大が見込ま れることから、本マニュアルでは、接合部を比較的剛強とする考え方(A タイプ)と、接合部を簡素 化する考え方(B タイプ)の二通りについての検討を行うこととする。なお、接合に関する考え方に ついては、後述の 3.1.11 も参照されたい。

A タイプについては、図 3.1.17 に示すように、架構実験の架構試験体 A において採用した、RC 柱 ーCLT 袖壁間の鉛直接合部、RC はりーCLT 袖壁間の水平接合部に、鋼板挿入ドリフトピン接合部を 採用し、水平接合部の CLT 袖壁端にはアンカーボルトを設置する方法を想定している。B タイプと比 較すると、「RC 柱自体の水平耐力の増大効果が期待できる点」、「RC はりの塑性ヒンジ形成位置を RC 柱フェイスから CLT 袖壁フェイスに確実に移動でき、崩壊形が明確となる点」、「RC はり部材のせん 断負担を軽減できる点」などがメリットとして挙げられ、また、周辺の RC 部材と金物を介して接合 するため、CLT 袖壁の位置がずれたり、面外方向の転倒が生じたりする恐れが小さい。但し、面外方 向の水平変形に対する追随性については現状では検討を行えていないため、過度の面外変形が生じる とドリフトピン接合部の周辺に想定外の損傷が生じる恐れがある点には注意が必要である。

図 3.1.17 A タイプの接合方法の一例

Bタイプについては、図 3.1.18 に示すように、架構実験の架構試験体 B において採用した滑り止め を、RC はりーCLT 袖壁間の水平接合部に設ける方法を想定している。A タイプと比較すると、RC 柱 自体を補強する効果は期待できない点」、「CLT 袖壁を設置する最下層や最上層の一部のはり端では、 RC フェイス位置に塑性ヒンジが形成されるなどヒンジリロケーション効果が弱まる点」、「RC はりに 作用するせん断力が大きく、せん断設計が厳しくなる点」などのデメリットがあるが、「CLT 袖壁に接 合材を直接取り付ける必要がなく、加工や施工が容易な点」、また、「A タイプと比較すると、構造計 算が容易に行える点」などにメリットがある。面外方向に水平変形が生じた場合にも、CLT 袖壁の変 形を拘束する要素がないため、想定外の損傷が生じる恐れも小さいものと考えられる。一方で、CLT 袖壁がラーメン内から一度外れてしまうと転倒を止める要素がないため、特に RC 柱に塑性ヒンジが 形成され、軸伸びが生じる恐れがあるような場合には、転倒防止の措置を取ることが望ましい。具体 的には、図 3.1.19 に示すように、面外方向の変形を拘束しないように適度なクリアランスを設けた上 で、滑り止めの両側に CLT 袖壁を挟み込むように鉄板を延長する方法などが考えられる。

B.構造分野

本マニュアルでは、CLT 袖壁における主たる水平せん断力の伝達要素として、上下の仕口面に生じ る摩擦力を想定しており、以下の考え方に基づいて、RC ラーメンに挿入する CLT 袖壁の形状を制限 することで必要な摩擦耐力を確保する。図 3.1.20 では、B タイプの CLT 袖壁を対象に、CLT 袖壁の頂 部及び脚部が曲げ終局モーメントに到達した状態を考える。摩擦によるせん断力の伝達を行うために は、式(3.1.1)に示すように、摩擦耐力が曲げ終局モーメント時のせん断力を上回ることを確認すれば よい。ここで、式中の軸力 N_w を両辺から削除し、軸力が最も小さい $N_w=0$ 時においても、式(3.1.1)を 満足させることを考えると式(3.1.2)が導かれ、CLT 袖壁の形状 (D_w/h_0) のみで CLT 袖壁に作用する水 平せん断力を無条件で RC はりや RC 基礎はりに伝達できるかどうかを確認できる。

3.1.8 で後述するように、本マニュアルでは、モルタルによる充填を行った水平目地の摩擦係数 μ を 0.5 としているが、保証設計において水平目地に作用するせん断力の割り増し(1.25 倍)を行うことを 踏まえると、実質的な摩擦係数は 0.5/1.25=0.4 と考えることができる。今回検討を行った部材試験体 及び架構試験体で用いられている CLT 袖壁の寸法比(*D*_w/*h*₀)は、それぞれ 0.38(=650mm/1700mm)、 0.40(=650mm/1600mm)となり、上述した摩擦係数と同程度の値となる。以上を踏まえ、A、B タイ プのいずれについても、本マニュアルでは、必要な摩擦耐力を確保できるように、内法高さに対する 袖壁せいの比率が 0.4 を下回る CLT 袖壁を対象とする。

$${}_{w}Q_{fu}(=\mu \cdot N_{w}) \ge {}_{w}Q_{mu}(=N_{w} \cdot (1 - \frac{N_{w}}{0.85 \cdot t_{w} \cdot {}_{tv}F_{k}}) \cdot \frac{D_{w}}{h_{0}})$$

$$\mu \ge \frac{D_{w}}{h_{0}}$$

$$(3.1.1)$$

(3.1.2)

但し、 μ :摩擦係数、 N_w : CLT 袖壁の軸方向力、 t_w : 袖壁の厚さ、 D_w : 袖壁のせい、 h_0 : 袖壁の内法 高さ、 t_vF_k : CLT の圧縮の基準強度を用いた座屈強度(鉛直方向)である。

図 3.1.20 CLT 袖壁の摩擦による水平せん断力の伝達条件

なお、Aタイプ、Bタイプのいずれについても、架構の変形が大きくなると、上記の検討だけでは、 必要な摩擦力を確保することが難しくなる可能性がある。Aタイプでは、水平接合部に設けたアンカ ーボルトの引張力や鉛直接合部から伝達される鉛直せん断力が作用することで、CLT 袖壁に作用する 水平せん断力が増大するため、式(3.1.2)を満足するだけでは、必要な摩擦力を確保できなくなる。そこ で、Aタイプの場合は、摩擦力によって伝達できない水平せん断力を、鉛直接合部を介して、RC 柱に 伝達することを想定する。

また、B タイプでも、大変形時には滑り止めの支圧によるせん断伝達を行うことを想定しているが、 これは以下のような理由による。図 3.1.21 に架構試験体 B の載荷実験における R=1/33rad 時の水平接 合部の状況を示す。RCはりに塑性ヒンジが形成されるとRCはりに軸伸びが生じるため、上下にある 滑り止めのうち、頂部にある滑り止めについては、CLT 袖壁との間に離間が生じており、その役割を 果たしていない。一方で、脚部にある滑り止めについては、RC はりの曲げ変形の増大により、滑り止 めが CLT 袖壁にめり込む形となり、CLT 袖壁に形成される対角方向の斜めストラットの形成に貢献し ているものと考えられる。一方で、試験体頂部の水平目地を見ると、RC はりの曲げ変形によって、無 収縮モルタルのひび割れや剥落が発生している様子が確認できる。本マニュアルで採用した摩擦係数 は、平行な摩擦面を対象に行われた実験結果から算出されたものであり、摩擦面に変形が生じた場合 にも同様の耐力が確保できるかどうはか不明である。また、今回の検討では、滑り止めを外した状態 での載荷実験は実施しておらず、現状ではその挙動を保証できないため、本マニュアルでは、水平接 合部の保証設計において、滑り止めにより必要なせん断耐力を確保することを原則とした。なお、支 圧に関しては、CLT 袖壁の側面のめり込みによってせん断力の伝達を行うため、摩擦と比較するとせ ん断剛性は低いが、大変形時にも安定した応力伝達を行うことが可能である。一方で、摩擦に関して は、滑りが発生するまでは変形がほとんど生じないものと考えられ、RC ラーメンの変形を CLT 袖壁 に効率的に伝達する意味で有益である。以上の理由より、B タイプでは、小変形時(一次設計)は摩 擦に、大変形時(二次設計)は支圧に期待して水平接合部の設計を行うこととした。

図 3.1.21 架構試験体 B における水平接合部の状況(R=1/33rad)

上記の接合方法以外についても、本マニュアルに示す構造設計法に基づいた検討を行えば、本構造 形式にも適用可能であるが、構造実験等を行い、必要な構造性能を有していること、想定外の破壊性 状を示さないことを確認することが望ましい。また、本マニュアルで示した部材実験や架構実験につ いても、縮尺 2/3 の模型試験体を用いた検証であるため、実験に用いた CLT パネルも 3 層 3 プライ

(90mm 厚)もしくは3層4プライ(120mm 厚)のものに限られている。特にAタイプの水平、鉛直接合部で用いた鋼板挿入ドリフトピンについては、接合部に設置されるドリフトピンの本数が多く、 CLTパネルの層数やドリフトピンの直径による影響が大きいため、実構造物にこれらを適用する際に は注意が必要である。

その他の接合方法に関しては、後述の 3.1.11 で取り上げるが、その一例として、ここでは図 3.1.1 で 示した部材実験で採用した接着工法に関する例を挙げる。試験体 AS、AD では、水平、鉛直接合部に 接合材として用いた山形鋼を CLT 袖壁の側面とエポキシ樹脂で接着する接合形式を採用している。接 着による接合形式は、入力せん断力に対して十分な接着面積を確保することで、高い剛性を確保する ことが可能である。実際に、同試験体を対象とした骨組解析では、鉛直接合部の鉛直せん断力ーせん 断変形関係に剛塑性モデルを採用し、鉛直接合面の変形が生じないものと仮定することで、実験時の 挙動を精度良く再現できた。一方で、水平接合部に関しては、アンカーボルト(4-M16)の引張力によ る曲げモーメントによって、接着面近傍のラミナが繊維直交方向に引張を受けたことで接着面の破壊 が生じ、アンカーボルトの引張力が低下する挙動が確認されている。したがって、接着工法を水平接 合部に採用する場合には、接着面に引張力が生じないように、ボルトの締め付けを十分行う、接着面

3.1.4 モデル化の方法

(a) モデルの概要

本マニュアルでは、RC ラーメンに CLT 袖壁を挿入する混構造建築物の地震時挙動を骨組解析にお いて再現する手法として、図 3.1.22、図 3.1.23 に示す簡易モデルを想定している。なお、部材実験お よび架構実験の検証に用いた図 3.1.24、図 3.1.25 に示す詳細モデルを用いれば、各部位の応力状態を より詳細、適切に評価することは可能であるが、モデル化に必要となる部材数が多いこと、簡易モデ ルでも工夫することで、詳細モデルと同程度の精度で応力状態を評価できることを踏まえ、簡易モデ ルによるモデル化でも問題がないものとした。図 3.1.28、図 3.1.29 には、部材実験及び架構実験の試 験体を対象とした荷重変形関係の比較を示している。部材実験では、簡易モデルと詳細モデルの差が 非常に小さく、架構実験では、簡易モデルの方が詳細モデルよりも、水平剛性や最大耐力をやや大き めに評価するものの、実験の荷重変形関係を安全側に評価できることが分かる。また、評価精度の検 証は行っていないが、図 3.1.26、図 3.1.27 に示す簡易モデルと詳細モデルの混合モデル(簡易モデル における CLT 袖壁の上下端の水平接合部におけるファイバー要素を、詳細モデルにおける軸ばね、せ ん断ばねに置き換えたモデル) についても、両モデルと同等の評価精度が期待できるものと考えられ る。

以降に、簡易モデルを構築する場合に必要となる各部位ごとにモデル化の手法を示す。また、参考 となる情報として、各項目の末尾に詳細モデルの構築方法も示す。なお、いずれのモデルを用いる場 合にも、混構造であることを踏まえた工夫が必要となるため、以下のように、ある程度モデル化が自 由に行える骨組解析プログラムを使用することが望ましい。

(骨組解析プログラムに求められる条件)

- ・各階の中間部分に節点を設けて層を分割できること(Aタイプ)。
- ・CLT 袖壁の支圧特性を評価するためのファイバー要素(もしくは MS 要素)を選択でき、各要素の荷重-変形関係(応力-ひずみ関係)を複数の折れ点で設定できること(A、B タイプ)。
- ・CLT 袖壁と軸剛性の整合が取れるように、RC 柱にもファイバー要素(もしくは MS 要素)を選 択できること(A、B タイプ)。
- ・CLT 袖壁の軸剛性(もしくは曲げ剛性)とせん断剛性を再現するために、せん断の有効断面積を 調整できること、もしくは、せん断ばねの弾性剛性を任意に設定できること(A、Bタイプ)。
- ・RC ラーメンの建設後に CLT 袖壁を挿入するケースに対応できるように、CLT 袖壁における長期 軸力の負担を無視できることが望ましい(A、Bタイプ)。一方で、CLT 袖壁に作用する長期軸力 が大きくなるほど、CLT 袖壁に作用するせん断力や曲げモーメントも大きくなるため、CLT 袖壁 に作用する長期軸力を無視できない場合は、CLT 袖壁の許容応力度設計を行う上で安全側の仮定 となるものと考えられる。

図 3.1.23 実験試験体を基にしたモデル化のイメージ(Bタイプ、簡易モデル)

図 3.1.24 実験試験体を基にしたモデル化のイメージ(A タイプ、詳細モデル)

図 3.1.25 実験試験体を基にしたモデル化のイメージ(Bタイプ、詳細モデル)

図 3.1.26 実験試験体を基にしたモデル化のイメージ(A タイプ、混合モデル)

図 3.1.27 実験試験体を基にしたモデル化のイメージ(Bタイプ、混合モデル)

図 3.1.29 架構実験における荷重変形関係の比較

(b) RC 柱

簡易モデルのうち、Aタイプでは各層を2分割して、Bタイプでは分割は行わずに、RC柱のモデル 化を行う。Aタイプで分割を行うのは、RC柱-CLT袖壁間の鉛直接合部における鉛直せん断力の伝 達を再現するためである。なお、計算の簡略化を図るため、RC柱-CLT袖壁間の鉛直接合部を介し た水平せん断力の伝達は許容せず、RC柱に作用するせん断力の値が各層で等しくなるようにモデル 化を行う。一方で、保証設計では、隣接するCLT袖壁に作用する水平せん断力のうち、摩擦力による 伝達ができない分は、鉛直接合部を介して、RC柱に伝達されるものと考えるため、RC柱に対するせ ん断設計や、鉛直接合部の水平せん断耐力の確認を別途行う必要がある。

RC 柱は線材でモデル化し、各階の脚部及び頂部には軸力および曲げモーメントに対応するファイ バー要素を、各線材の中央にはせん断力に対応するせん断ばねを設置する。RC 柱に関しては、ファイ バー要素の代わりに軸ばね及び曲げばねを適用することも可能であるが、CLT 袖壁の材端に支圧特性 を評価するためのファイバー要素を設置することを踏まえ、RC 柱の材端にもファイバー要素を用い ることとした。ファイバー要素の分割数に関しては、特に制約は設けていないが、ここでは、簡易モ デルにおける CLT 袖壁の分割数である 10 分割を目安としている。なお、コンクリートの応力ーひず み関係は、NewRC モデル^[3.1.2]や Saatcioglu ら^[3.1.3]による提案モデル等、応力ーひずみ関係を精緻に再 現できるモデルが好ましい。なお、コンクリートの引張応力の負担は考慮しない。また、鉄筋の応力 ーひずみ関係は、バイリニアでのモデル化を想定している。

せん断ばねは、図 3.1.30 に示すように、せん断ひび割れ点、せん断耐力点を持つバイリニアでモデ ル化する。せん断ひび割れ耐力、せん断耐力は以下の式で算定した^[3.14]。なお、A タイプについては、 CLT 袖壁と鉛直接合部を介して接合する関係で1本の柱を分割してモデル化を行っているため、通常 の部材のように、部材内の1箇所のみにせん断ばねを設けた場合、局所的な変形の増大によって、両 者の応力伝達に支障をきたす可能性がある。そこで、各階の脚部及び頂部のうち、最も厳しい応力状 態(せん断耐力が最も低くなる条件)を用いて、せん断ひび割れ耐力、せん断耐力を計算し、分割し た各線材の中央に同じ復元力特性を持つせん断ばねを分散配置することとした。

(せん断ひび割れ耐力[3.1.4])

$${}_{c}Q_{sc} = \varphi \sqrt{{}_{c}\sigma_{T}^{2} + {}_{c}\sigma_{T} {}_{c}\sigma_{0}} b_{c}D_{c}\frac{1}{\kappa_{s}}$$

ここで、 φ :耐力係数、 σ_{T} : コンクリートの引張強度(=0.33 $\sqrt{_{c}F_{c}}$ 、 $_{c}F_{c}$: コンクリートの設計基準 強度(N/mm²))、 σ_{0} : RC 柱の平均軸方向応力度(N/mm²)、 b_{c} : RC 柱の幅(mm)、 D_{c} : RC 柱のせい (mm)、 κ_{s} :応力度法による形状係数(矩形断面の場合は 1.5)である。

(せん断耐力^[3.1.4])

$${}_{c}Q_{su} = \left\{ \frac{0.068_{c} p_{t}^{0.23} ({}_{c}F_{c} + 18)}{M / (Q \cdot d_{c}) + 0.12} + 0.85 \sqrt{{}_{c} p_{wc} \sigma_{wy}} + 0.1_{c} \sigma_{0} \right\} b_{c} j_{c}$$

(3.1.4)

(3.1.3)

ここで、 p_t : RC 柱の引張鉄筋比(%)、 F_c : コンクリートの設計基準強度(N/mm²)、M/Q: M, Qはそれぞれ終局強度算定時における部材内の最大曲げモーメント及びせん断力(ただし、 $M/(Qd_c)$ は、 $M/(Qd_c) < 1$ のとき1とし、 $M/(Qd_c) > 3$ のとき3とする)(mm)、 d_c : RC 柱の有効せい(mm)、 p_w : RC 柱のせん断補強筋比(小数、中子筋を除く場合 0.012 を上限とする。ただし、せん断補強筋として中 子筋を併用する場合やスパイラル筋を用いる場合には 0.015 を上限とすることができる。)、 σ_{wy} : RC 柱のせん断補強筋の降伏強度(N/mm²)、 j_c : RC 柱の応力中心距離で7 $d_c/8$ としてよい(mm)、 σ_0 : RC 柱の平均軸方向応力度(= $N_c/(b_c D_c)$)(N/mm²)で0.4 cF_c 以下である。

(せん断ばねの終局ひずみ)

$$_{c}\gamma_{su} = 0.004 - \frac{_{c}Q_{su} \cdot \kappa_{e}}{_{c}G_{c} \cdot b_{c} \cdot D_{c}}$$

(3.1.5)

ここで、 $_{c}Q_{su}$: RC 柱のせん断耐力、 κ_{e} : エネルギー法による形状係数(矩形断面の場合は 1.2)、 $_{c}G_{c}$: コンクリートのヤング係数 (N/mm²)、 b_{c} : RC 柱の幅 (mm)、 D_{c} : RC 柱のせい (mm) である。

図 3.1.30 RC 柱のせん断ばねの復元力特性

(詳細モデルの場合)

詳細モデルの場合は、A タイプにおいて、RC 柱の塑性ヒンジ位置における回転変形を CLT 袖壁に 効率的に伝達するために、RC 柱の分割数を簡易モデルの2倍となる4分割としているが、その他の 項目については、基本的に簡易モデルと同じ方法でモデル化を行っている。

(c) RC はり

RC はりに関しては、一つのスパン内にせん断ばね、曲げばねを複数設ける点が特徴である。これ は、CLT 袖壁の設置による RC はりのヒンジリロケーション効果を再現するためのもので、RC はり のせん断力、曲げモーメント分布が CLT 袖壁と接する部分で不連続となることを踏まえている。複数 のばねを用いる煩雑さはあるが、CLT 袖壁フェイス近傍に塑性ヒンジを形成させるために必要となる 十分な反力が CLT 袖壁端から得られない場合には、RC 柱フェイス位置に塑性ヒンジが形成されるこ ととなり、塑性ヒンジの形成位置が自動的に判別されるメリットがある。なお、通常の構造設計と同 じように、RC はりに作用する軸力の影響は無視してモデル化を行う。

(剛域の設定)

簡易モデルでは CLT 袖壁内の応力伝達機構を簡略化して再現するため、RC 柱フェイス位置や CLT 袖壁フェイス近傍を除くと、RC はりに作用するせん断力や曲げモーメントを正しく評価することが できない。そこで、CLT 袖壁と RC はりが接続される位置に剛域を設けることとした。なお、CLT 袖壁内の RC はりの弾性変形のうち曲げ変形に関しては、詳細モデルによる解析結果より、CLT 袖壁内 における RC はりの曲げモーメント分布が等分布に近いこと(後述の図 3.1.52、図 3.1.53 を参照)を 踏まえ、剛域内の曲げ変形を RC 柱フェイス位置の曲げばねで再現することとした。一方、CLT 袖壁 内の RC はりの弾性変形のうちせん断変形に関しては、CLT 袖壁内で不連続となる RC はりのせん断 力分布の再現が困難なため、ここでは無視して考えることとしたが、架構実験を対象とした骨組解析 における荷重変形関係の評価精度に問題はなかった。

(曲げばねの位置および復元力特性の設定)

簡易モデルでは、一つのスパンにつき、RC 柱フェイス位置に2箇所、CLT 袖壁フェイス近傍に2箇 所の計4か所に曲げ断ばねを設ける。簡易モデルでは、今阪らが提案した RC 造の二次壁付き架構に おける最大モーメント点(塑性ヒンジ位置)の推定手法^[3.1.5]を参考に、CLT 袖壁フェイス位置から曲 げばねまでの距離L_bを以下の式で推定することとした。なお、簡易モデルでは、CLT 袖壁を模した線

材が RC はりに取り付く位置で曲げモーメント分布が不連続となるため、曲げばねの位置は CLT 袖壁 を模した線材よりもスパン内側に設ける必要がある。そのため、簡易モデルでは、L_bは袖壁せい D_wの 0.5 倍を下回る範囲で設定する必要がある。L_bが袖壁せい D_wの 0.5 倍を超える場合は、RC はりの曲 げモーメント分布が再現可能な詳細モデルや混合モデルを使用する必要がある。

$$L_b = -0.5_b L_0 + \sqrt{(0.5_b L_0)^2 + \frac{2_b M_u}{{}_t F_k \cdot t_w}}$$

(3.1.6) ここで、*L*_b: CLT 袖壁端から RC はりの危険断面位置までの距離、_b*L*₀: CLT 袖壁のフェイス間の内 法スパン、_b*M*_u: RC はりの曲げ終局モーメント、_b*F*_k: CLT の圧縮の基準強度を用いた座屈強度(鉛直 方向)、*t*_w: CLT 袖壁の壁厚である。

簡易モデルでは、図 3.1.31(b)に示すように、CLT 袖壁フェイス近傍の曲げばねは剛塑性モデルとしたが、RC 柱フェイスの曲げばねについては、図 3.1.31(a)に示すように、弾性変形を含む弾塑性モデルとした。

(曲げ終局モーメント^[3.1.4]) _b $M_u = 0.9_b a_t \cdot {}_b \sigma_v \cdot d_b$

ここで、 $_ba_t$: RC はりの引張鉄筋の断面積、 $_b\sigma_y$: RC はり主筋の降伏強度、 d_b : RC はりの有効せいである。

(曲げひび割れ時回転角)

簡易モデルの RC 柱フェイス位置における曲げひび割れ時回転角は、部材長(*D*_w-*L*_b)に渡って、 曲げモーメント分布が等分布であるものと仮定し、以下の算定式によって求める。

$${}_{b}\theta_{cr} = {}_{b}M_{cr}\frac{D_{w}-L_{b}}{2{}_{c}E_{c}\cdot{}_{b}I_{e}}$$

(3.1.9)

(3.1.8)

ここで、 ${}_{b}M_{cr}$: RC はりの曲げひび割れモーメント、 D_{w} : CLT 袖壁のせい、 L_{b} : CLT 袖壁端から RC はりの危険断面位置までの距離、 ${}_{c}E_{c}$: コンクリートのヤング係数、 ${}_{b}I_{c}$: RC はりの鉄筋を考慮した断 面二次モーメントである。

(曲げ降伏時回転角)

簡易モデルの RC 柱フェイス位置における曲げ降伏時回転角は、部材長 $(D_w - L_b)$ に渡って、曲げ モーメント分布が等分布であるものと仮定し、以下の算定式によって求める。なお、降伏点剛性低下 率^[3.1.4]に関しては、せん断スパン比を適用範囲の上限値 $(a/D_b=5.0)$ と一致するものとして、計算を 行う。

$${}_{b}\theta_{y} = {}_{b}M_{y} \frac{D_{w} - L_{b}}{2\alpha_{y} \cdot {}_{c}E_{c} \cdot {}_{b}I_{e}}$$

(3.1.10)

ここで、 ${}_{b}M_{y}$: RC はりの曲げ降伏モーメントで、ここでは曲げ終局モーメント ${}_{b}M_{u}$ と等しいものと 仮定する、 D_{w} : CLT 袖壁のせい、 L_{b} : CLT 袖壁端から RC はりの危険断面位置までの距離、 a_{y} : RC は りの降伏点剛性低下率、 ${}_{e}E_{c}$: コンクリートのヤング係数、 ${}_{b}I_{e}$: RC はりの鉄筋を考慮した断面二次モ ーメントである。

$$\alpha_{y} = \begin{cases} (0.043 + 1.64n_{e\,b}\,p_{t} + 0.043a\,/\,D_{b})(d_{b}\,/\,D_{b}) & (2.0 \le a\,/\,D_{b} \le 5.0) \\ (-0.0836 + 0.159a\,/\,D_{b})(d_{b}\,/\,D_{b}) & (1.0 \le a\,/\,D_{b} \le 2.0) \end{cases}$$

(3.1.11)

ここで、 n_e : ヤング係数比、 $_bp_t$: RC はりの引張鉄筋比、 a/D_b : RC はりのせん断スパン、 d_b : RC は りの有効せい、 D_b : RC はりのせいである。

簡易モデルの CLT 袖壁フェイス近傍における曲げ降伏時回転角は、部材長を bL0+2Lb とし、逆対称 の曲げモーメント分布を仮定して、以下の算定式によって求める。

$${}_{b}\theta'_{y} = {}_{b}M_{y}\frac{1-\alpha_{y}}{\alpha_{y}}\frac{{}_{b}L_{0}+2L_{b}}{6{}_{c}E_{c}\cdot{}_{b}I_{e}}$$

(3.1.12)

ここで、 ${}_{b}M_{y}$: RC はりの曲げ降伏モーメントで、ここでは曲げ終局モーメント ${}_{b}M_{u}$ と等しいものと 仮定する、 ${}_{b}L_{0}$: CLT 袖壁のフェイス間の内法スパン、 L_{b} : CLT 袖壁端から RC はりの危険断面位置ま での距離、 α_{y} : RC はりの降伏点剛性低下率、 ${}_{c}E_{c}$: コンクリートのヤング係数、 ${}_{b}I_{c}$: RC はりの鉄筋を 考慮した断面二次モーメントである。

ところで、RC 柱フェイス位置の曲げばねの復元力特性を設定する際に仮定する部材長($D_w - L_b$) が短い場合、図 3.1.31(a)で求められる曲げ降伏時の回転角 $_{b}O_y$ が非常に小さい値となる。このような場 合には、ヒンジリロケーションの効果が不十分であることから、RC 柱フェイス位置の曲げばねに回 転角が集中する可能性があり、曲げばねの塑性率が実状に沿わない非常に大きい値となることも想定 される。そこで、架構実験による検証は行えていないが、暫定的な対応として、部材長($D_w - L_b$)が RC はりのせい D_b よりも小さく、RC 柱フェイス位置の曲げばねに回転角が集中するような場合につ いては、以下のような方法で曲げばねの復元力特性の設定をする。

RC 柱フェイス位置における曲げばねの復元力特性は、図 3.1.32(a)に示すように、曲げひび割れ発生後に塑性変形が生じるトリリニアとする。なお、簡易モデルでは、部材長(*D*_w-*L*_b)の線材を剛体と

してモデル化を行うため、線材の弾性変形を考慮し、曲げひび割れ発生までは回転角が生じないもの と仮定すると、その区間の変形を無視することになるが、ここで示す手法は部材長(*D*w-*L*b)が短い ケースを対象としているため、許容することとする。曲げ降伏時回転角は、RC はりのヒンジリロケー ションの効果を無視し、通常の RC ラーメンと同じように、式(3.1.21)に基づいて算定する。この際、 RC はりの降伏点剛性低下率を算定する際に必要となるせん断スパン比を、RC はりの材端に作用する 最大のせん断力と曲げモーメントから算定した場合、せん断スパン比が小さくなり、剛性低下率を過 小に、降伏時回転角を過大に評価してしまう可能性があるため、ここでは RC はりの内法スパンの半 分を RC はりのせいで除した値を採用する。

また、CLT 袖壁フェイス近傍における曲げばねの復元力特性は、図 3.1.32(b)に示す剛塑性モデルとし、ヒンジリロケーションによる剛性増大効果は見込まないものの、RC はりに作用する曲げモーメントが曲げ終局モーメントで頭打ちとなるように配慮する。

$${}_{b}\theta_{y} = {}_{b}M_{y}\frac{L_{0}}{6\alpha_{y}\cdot{}_{c}E_{c}\cdot{}_{b}I_{e}}$$

(3.1.13)

ここで、 ${}_{b}M_{y}$: RC はりの曲げ降伏モーメントで、ここでは曲げ終局モーメント ${}_{b}M_{u}$ と等しいものと 仮定する、 L_{0} : RC はりの内法長さ、 α_{y} : RC はりの降伏点剛性低下率(計算に用いるせん断スパン比 a/D_{b} は内法スパン内で逆対称の曲げモーメントを仮定した場合の値を用いる)、 E_{c} : コンクリートの ヤング係数、 b_{c} : RC はりの鉄筋を考慮した断面二次モーメントである。

(せん断ばねの位置および復元力特性の設定)

簡易モデルでは、一つのスパンにつき、RC 柱フェイス位置に2箇所、スパン中央に1箇所の計3か 所にせん断ばねを設ける。詳細モデルでは自動計算される CLT 袖壁フェイス近傍の2箇所について は、簡易モデルでは直接せん断力を求めることができないため、後述する3.1.8に示す保証設計に基づ き、設計用せん断力の算定を行った上で、せん断破壊が生じないことの確認のみを行う。

全てのせん断ばねの復元力特性について、図 3.1.33 に示すように、弾性変形を含まない剛塑性モデルを用いた。いずれのせん断ばねに関しても、下記の算定式を用いてせん断耐力^[3.1.4]を算定すればよいが、RC 柱フェイスに関しては、CLT 袖壁から伝達される鉛直方向のせん断力がせん断スパンが非常に小さい状況で作用するため、下記のパンチングシア耐力式^[3.1.6]を用いてもよいものとした。なお、式(3.1.16)の下限式 *K*_{min} ではなく、付録に記載された式(3.1.17)の平均式 *K*_{av}を用いてもよいこととしたが、その理由は後述の保証設計において説明する。

(せん断耐力^[3.1,4])

$${}_{b}Q_{su} = \left\{ \frac{0.068_{b}p_{t}^{0.23}({}_{c}F_{c}+18)}{M/(Qd_{b})+0.12} + 0.85\sqrt{{}_{b}p_{wb}\sigma_{wy}} \right\} b_{b}j_{b}$$

(3.1.14)

ここで、 bp_t : 引張鉄筋比(%)、 F_c : コンクリートの設計基準強度(N/mm²)、M/Q: M, Qはそれぞれ終局強度算定時における部材内の最大曲げモーメント及びせん断力(ただし、 $M/(Qd_b)$ は、 $M/(Qd_b) < 1$ のとき1とし、 $M/(Qd_b) > 3$ のとき3とする)(mm)、 d_b : はりの有効せい(mm)、 bp_w : せん断補強筋比(小数、中子筋を除く場合 0.012を上限とする。ただし、せん断補強筋として中子筋を併用する場合やスパイラル筋を用いる場合には0.015を上限とすることができる。)、 $b\sigma_{wy}$: せん断補強筋の降伏強度(N/mm²)、 b_b : はり幅(mm)、 j_b : 応力中心距離で7 $d_b/8$ としてよい(mm)である。

(パンチングシア耐力^[3.1.6])

$${}_{b}Q_{pu} = K_{av} \cdot {}_{b}\tau_{0} \cdot {}_{b}b_{e} \cdot D_{b}$$

 $K_{\min} = 0.34/(0.52 + a_{b}/D_{b})$
(3.1.15)

$$K_{av} = 0.58 / (0.76 + a_b / D_b)$$
(3.1.16)

(3.1.18)

ここで、 ${}_{b}Q_{pu}$: RC はりのパンチングシア耐力、 ${}_{b}b_{e}$: パンチングを受ける RC はりの直交材を考慮した有効幅で RC はりの幅としてよい (mm)、 D_{b} : パンチングを受ける RC はりのせい (mm)、 a_{b} : CLT 袖壁から RC はりに伝達される鉛直せん断力が集中的に作用すると仮定した場合の作用点から鉛直断面までの距離で $a_{b}/D_{b}=1/3$ としてよい、 ${}_{e}F_{e}$: コンクリートの設計基準強度 (N/mm²)、 σ_{b} : ${}_{b}p_{g}$: ${}_{b}b_{e}D_{b}$ に対するはりの全主筋断面積の比、 ${}_{b}\sigma_{y}$: RC はり主筋の降伏強度 (N/mm²) である。

(詳細モデルの場合)

詳細モデルでは、簡易モデルと比較して、RC はりの分割数を増やしており(一つのスパンで9分割)、RC はり内のせん断力分布、曲げモーメント分布を概ね再現できるものと考えられるため、簡易 モデルのように、剛域は設定せず、全ての線材のせん断変形および曲げ変形を考慮する。そのため、 曲げばねの復元力特性には、図 3.1.34 に示すように、弾性変形を含まない剛塑性モデルを用いる。ま た、CLT 袖壁の水平断面を四分割して支圧ばねを設置するため、CLT 袖壁フェイス近傍の曲げばねの 位置は、式(3.1.6)によって求められる CLT 袖壁フェイス位置から曲げばねまでの距離 L_b を参考に、 CLT 袖壁フェイス位置から内側に袖壁せいの 1/8 倍、3/8 倍、5/8 倍、7/8 倍のいずれか(以降、この長 さを L₆'と称する)だけ入り込んだ位置に設けることとする。なお、図 3.1.24、図 3.1.25 では、袖壁せ いの 1/8 倍入り込んだ位置に曲げばねを設けている。

(a) CLT 袖壁フェイス近傍、RC 柱フェイス 図 3.1.34 詳細モデルにおける RC はりの曲げばねの復元力特性

詳細モデルの RC 柱フェイス位置における曲げ降伏時回転角は、部材長(*D*w-*L*b')に渡って、曲げ モーメント分布が等分布であるものと仮定し、以下の算定式によって求める。なお、降伏点剛性低下 率に関しては、せん断スパン比を適用範囲の上限値(*a*/*D*b=5.0)と一致するものとして、計算を行う。

$${}_{b}\theta'_{y} = {}_{b}M_{y}\frac{1-\alpha_{y}}{\alpha_{y}}\frac{D_{w}-L_{b}'}{2{}_{c}E_{c}\cdot{}_{b}I_{e}}$$

(3.1.19)

ここで、 ${}_{b}M_{y}$: RC はりの曲げ降伏モーメントで、ここでは曲げ終局モーメント ${}_{b}M_{u}$ と等しいものと 仮定する、 D_{w} : CLT 袖壁のせい、 L_{b}' : CLT 袖壁フェイス位置から曲げばねまでの距離で、袖壁せいの D_{w} の 1/8 倍、3/8 倍、5/8 倍、7/8 倍のいずれかとする、 a_{y} : RC はりの降伏点剛性低下率、 ${}_{c}E_{c}$: コンク リートのヤング係数、 ${}_{b}I_{e}$: RC はりの鉄筋を考慮した断面二次モーメントである。

また、詳細モデルの CLT 袖壁フェイス近傍における曲げ降伏時回転角は、部材長を bL0+2Lb'とし、 逆対称の曲げモーメント分布を仮定して、以下の算定式によって求める。

$${}_{b}\theta'_{y} = {}_{b}M_{y}\frac{1-\alpha_{y}}{\alpha_{y}}\frac{{}_{b}L_{0}+2L_{b}'}{6{}_{c}E_{c}\cdot{}_{b}I_{e}}$$

(3.1.20)

ここで、 ${}_{b}M_{y}$: RC はりの曲げ降伏モーメントで、ここでは曲げ終局モーメント ${}_{b}M_{u}$ と等しいものと 仮定する、 ${}_{b}L_{0}$: CLT 袖壁のフェイス間の内法スパン、 ${}_{L_{0}}$ ': CLT 袖壁フェイス位置から曲げばねまでの 距離で、袖壁せいの D_{w} の 1/8 倍、3/8 倍、5/8 倍、7/8 倍のいずれかとする、 a_{y} : RC はりの降伏点剛性 低下率、 ${}_{c}E_{c}$: コンクリートのヤング係数、 ${}_{b}L_{c}$: RC はりの鉄筋を考慮した断面二次モーメントである。

なお、簡易モデルの場合と同じように、部材長 ($D_w - L_b$) が RC はりのせい D_b よりも小さく、RC 柱フェイス位置の曲げばねに回転角が集中するような場合については、以下のような方法で曲げばね の復元力特性の設定をする。

RC 柱フェイス位置における曲げばねの復元力特性は、図 3.1.35(a)に示すように、曲げひび割れ発生後に塑性変形が生じるトリリニアとする。曲げ降伏時回転角は、RC はりのヒンジリロケーションの効果を無視し、通常の RC ラーメンと同じように、式(3.1.21)に基づいて算定する。この際、RC はりの

降伏点剛性低下率を算定する際に必要となるせん断スパン比を、RC はりの材端に作用する最大のせん断力と曲げモーメントから算定した場合、せん断スパン比が小さくなり、剛性低下率を過小に、降伏時回転角を過大に評価してしまう可能性があるため、ここでは RC はりの内法スパンの半分を RC はりのせいで除した値を採用する。また、CLT 袖壁フェイス近傍における曲げばねの復元力特性は、図 3.1.35(b)に示す剛塑性モデルとし、ヒンジリロケーションによる剛性増大効果は見込まないものの、RC はりに作用する曲げモーメントが曲げ終局モーメントで頭打ちとなるように配慮する。

$${}_{b}\theta_{y} = {}_{b}M_{y}\frac{L_{0}}{6\alpha_{y}\cdot{}_{c}E_{c}\cdot{}_{b}I_{e}}$$

(3.1.21)

ここで、 $_bM_y$: RC はりの曲げ降伏モーメントで、ここでは曲げ終局モーメント $_bM_u$ と等しいものと 仮定する、 L_0 : RC はりの内法長さ、 a_y : RC はりの降伏点剛性低下率(計算に用いるせん断スパン比 a/D_b は内法スパン内で逆対称の曲げモーメントを仮定した場合の値を用いる)、 E_c : コンクリートの ヤング係数、 L_c : RC はりの鉄筋を考慮した断面二次モーメントである。

図 3.1.35 詳細モデルにおける RC はりの曲げばねの復元力特性(曲げばねが近接する場合)

詳細モデルでは、一つのスパンにつき、RC 柱フェイス位置に2 箇所、CLT 袖壁フェイス近傍に2 箇 所、スパン中央に1 箇所の計5 か所にせん断ばねを設ける。図 3.1.36 に示すように、RC はりの曲げ ばねに菅野式を用いることを踏まえて、RC はりのせん断変形は線材の弾性変形のみを考慮し、各せ ん断ばねの復元力特性は剛塑性モデルで再現する。

(d) CLT 袖壁

CLT 袖壁は、簡易モデルでは線材モデルで再現した。各層における分割数は RC 柱と同じとし、簡 易モデルのうち、A タイプでは各層で2分割とし、B タイプでは分割は行わないものとした。また、 RC 柱-CLT 袖壁間の鉛直接合部では、水平方向のせん断力の伝達は許容しないため、CLT 袖壁に作 用する水平せん断力の値も各層で等しい値となる。

簡易モデルでは、各線材の中央にせん断力に対応するせん断ばねを設ける。CLT 袖壁の脚部および 頂部には軸力および曲げモーメントに対応する支圧特性を再現するためのファイバー要素を設置する 必要があるが、その内容については後述の水平接合部に関する説明で触れる。図 3.1.37 に簡易モデル に用いるせん断ばねの復元力特性を示す。なお、CLT に関しては、通常、骨組解析ソフトで設定でき るポアソン比 v'の範囲では、CLT 袖壁の軸剛性や曲げ剛性とせん断剛性(CLT マニュアル^[3.1,7]に記載 のある 500N/mm²を目安とする)を両立させることができない。そこで、ケース1 では、せん断の有 効断面積を調整する等して、この補正を行うことを想定し、せん断ばねの復元力特性には剛塑性モデ ルを用いることとする。一方、ケース2 では、このような調整を行えない場合を想定し、CLT の材料 特性を決定する際に仮定したポアソン比 v'を用いて、CLT 袖壁の弾性変形の評価を行うこととし、せ ん断ばねの復元力特性には弾塑性モデルを用いることとする。なお、本マニュアルでは、式(3.1.22)、 (3.1.26)に示す CLT 袖壁のせん断耐力の算定において、CLT の面内せん断の基準強度をそのまま用い る方針とした。その理由については、後述の 3.1.8 における保証設計の記述を参照されたい。

(せん断耐力)

$$_{w}Q_{su} = t_{w}D_{wt}F_{sI}$$

(3.1.22)

ここで、 t_w : CLT 袖壁の厚さ、 D_w : CLT 袖壁のせい、 $_{tFsl}$: CLT の面内せん断の基準強度である。

(せん断耐力時のせん断ひずみの補正値)

$$_{w}\gamma_{su}' = \frac{_{t}F_{sI}}{_{t}G_{c}} - _{t}F_{sI} \cdot \frac{2(1+\nu')}{_{t}E_{c}}$$

(3.1.23) ここで、_tF_{sl}: CLT の面内せん断の基準強度、_tG_c: CLT のせん断弾性係数、_tE_c: CLT のヤング係数、 v': CLT の材料特性を決定する際に仮定したポアソン比である。

(詳細モデルの場合)

詳細モデルでは、図 3.1.38 に示すように、CLT 袖壁をブレースモデルで再現する。CLT 袖壁の分割 数は、水平方向で 5、鉛直方向で 8 とした。水平方向の分割数は水平接合分の支圧ばねの本数(4本) に合わせて、また、鉛直方向の分割数は CLT 袖壁の軸剛性とせん断剛性を再現できるように、ブレー スモデルの勾配が 45 度に近い数値となるように決めた。

図 3.1.39 に詳細モデルに用いるブレース要素の復元力特性を示す。モデル化の方法は、壁式鉄筋コ ンクリート造設計・計算規準・同解説^[3.18]に記載された手法を参考とし、CLT 袖壁とブレース材によ るせん断剛性、せん断耐力が一致するように、ブレース材の剛性と軸耐力を求めた。次に CLT 袖壁と ブレース材の軸剛性が一致するように、鉛直材の剛性を求めた。なお、水平材は剛体とした。ブレー ス置換の場合、対象とする部材のせん断剛性に加えて、軸剛性もしくは曲げ剛性のいずれかを再現す ることが可能である。ここでは、CLT 袖壁の長さがあまり長くないことや、軸力比が比較的高い状況 での挙動が予測されることから、CLT 袖壁の軸剛性とせん断剛性が等価になるようにモデル化するこ ととした。詳細モデルでは、複数のブレース要素を並列に用いており、いずれかのブレース要素が軸 耐力に到達したとしても直ちにせん断破壊が生じる訳ではないため、軸耐力に達した後も荷重を保持 する形とした。また、鉛直材は弾性とし、CLT 袖壁の軸耐力や曲げ耐力の評価は、材端の水平接合面 に設けた軸ばねで行うこととした。

(CLT 袖壁の斜め材1本あたりの軸剛性)

$$k_{b1} = \frac{{}_{t}G_{c}}{2} \frac{t_{w}((\frac{D_{w}}{4})^{2} + (\frac{h_{0}}{8})^{2})}{\frac{D_{w}}{4} \cdot \frac{h_{0}}{8}} \quad (斜め材 1, 図 3.1.38 参照)$$

$$k_{b2} = \frac{{}_{t}G_{c}}{2} \frac{t_{w}((\frac{D_{w}}{8})^{2} + (\frac{h_{0}}{8})^{2})}{\frac{D_{w}}{8} \cdot \frac{h_{0}}{8}} \quad (斜め材 2, \boxtimes 3.1.38$$

ここで、 $_tG_c$: CLT のせん断弾性係数、 t_w : CLT 袖壁の厚さ、 D_w : CLT 袖壁のせい、 h_0 : CLT 袖壁の内法高さである。

(3.1.24)

(3.1.25)

(CLT 袖壁の鉛直材1本あたりの軸剛性)

$$\begin{aligned} k_{v1} &= (\frac{t_w \cdot \frac{D_w}{4} \cdot {}_t E_c}{\frac{h_0}{8}} - 2k_{b1} \frac{\frac{D_w}{4}}{\sqrt{(\frac{D_w}{4})^2 + (\frac{h_0}{8})^2}}) \quad (\text{给ietv} 1, \text{ (I) } 3.1.38 \text{ $\& \text{FR}$)} \\ k_{v2} &= \frac{1}{2} (\frac{t_w \cdot \frac{D_w}{8} \cdot {}_t E_c}{\frac{h_0}{8}} - 2k_{b2} \frac{\frac{D_w}{8}}{\sqrt{(\frac{D_w}{8})^2 + (\frac{h_0}{8})^2}}) \quad (\text{$\& \text{otherd} 1, \text{ (I) } 3.1.38 \text{ $\& \text{FR}$)} \\ k_{v3} &= \frac{1}{2} k_{v1} + k_{v2}} \quad (\text{$\& \text{otherd} 1, \text{ (I) } 3.1.38 \text{ $\& \text{FR}$)} \end{aligned}$$

ここで、 t_w : CLT 袖壁の厚さ、 D_w : CLT 袖壁のせい、 h_0 : CLT 袖壁の内法高さ、 E_o : CLT のヤング 係数である。

(CLT 袖壁の斜め材1本あたりの軸耐力)

$$p_{b1} = 0.5 \cdot t_{wt} F_{sI} \cdot \sqrt{\left(\frac{D_w}{4}\right)^2 + \left(\frac{h_0}{8}\right)^2} \quad (斜め材1)$$

$$p_{b2} = 0.5 \cdot t_{wt} F_{sI} \cdot \sqrt{\left(\frac{D_w}{8}\right)^2 + \left(\frac{h_0}{8}\right)^2} \quad (斜め材2)$$

(3.1.26)

ここで、 t_w : CLT 袖壁の厚さ、 D_w : CLT 袖壁のせい、 h_0 : CLT 袖壁の内法高さ、 F_{sl} : CLT の面内せん断の基準強度である。

図 3.1.38 CLT 袖壁のブレース置換時の斜め材、鉛直材の位置

図 3.1.39 CLT 袖壁のブレース要素の復元力特性

(e) 水平接合部

CLT 袖壁の上下端の仕口面には、軸力および曲げモーメントに対応する支圧特性とせん断伝達を再 現するための要素を設ける。また、A タイプでは、CLT 袖壁端に設けるアンカーボルトのモデル化も 行う必要がある。

簡易モデルでは、支圧特性を再現するためのファイバー要素を設けた。一般的な CLT 部材では、軸 力比が高い状況で使用されることが殆どないため、CLT マニュアル^[3,1,7]では、CLT 壁のせいを 4 分割 した範囲のうち、材端に近い部分を有効支圧面と仮定し、材端の 2 箇所のみに CLT の支圧挙動を模擬 した軸ばねを設けることとしている。本マニュアルでは、CLT 袖壁が圧縮耐力に近い軸力を受けて全 断面が支圧面となるようなケースも含めて検討を行う必要があることから、ファイバー要素の数を増 やすこととした。簡易モデルにおける断面の分割数は RC 柱と同じ 10 とした。なお、詳細モデルでは RC はりとの接続を考慮し、逆に分割数を4 に減らしているが、特に評価精度に支障がないことから、 断面の分割数は4 以上とすれば問題ないものと判断できる。

軸ばねの剛性には、CLT マニュアル^[31,7]に記載のある壁パネルー基礎間の支圧剛性 k_e の実験値 (15.6N/mm³)を用いた。また、本マニュアルでは、CLT 袖壁を高軸力下で用いることを踏まえ、CLT 袖壁の内法高さ h_0 に対して壁厚 (t_w)が小さい場合には、面外方向への座屈が発生する可能性がある ため、支圧耐力には座屈強度を用いることとし、CLT の座屈強度に到達した後は、一定の荷重を保持 するものと仮定した。なお、架構実験に使用した 3 層 4 プライの CLT 袖壁の有効細長比 λ は 23.1 で あり、座屈強度の低減が掛からない範囲 ($\lambda \leq 30$) での検証しか行えていないため、現状では、架構実 験における有効細長比 λ の範囲を大きく逸脱しない範囲で使用することが望ましい。

(ファイバー要素1本あたりの支圧耐力)

$${}_{w}p_{u} = \frac{1}{n_{s}}t_{w} \cdot D_{w} \cdot {}_{tv}F_{k}$$

(3.1.27) ここで、*n*_s: CLT 袖壁におけるモデル化の際の断面の分割数、*t*_w: CLT 袖壁の厚さ、*D*_w: CLT 袖壁 のせい、_w*F*_k: CLT の圧縮の基準強度を用いた座屈強度(鉛直方向)である。

(ファイバー要素1本あたりの支圧剛性)

$$k_{w} = \frac{1}{n_{s}} t_{w} \cdot D_{w} \cdot k_{s}$$

ここで、 n_s : CLT 袖壁におけるモデル化の際の断面の分割数、 t_w : CLT 袖壁の厚さ、 D_w : CLT 袖壁の付い、 k_e : CLT の支圧剛性である。

(3.1.28)

図 3.1.40 水平接合面におけるファイバー要素 もしくは軸ばね1本あたりの支圧ばねの復元力特性(圧縮が正)

また、A タイプでは、アンカーボルトの引張負担を再現するための軸ばねを設ける。ここでは、ド リフトピン接合を行う場合を対象とし、アンカーボルトの復元力特性から求められる変形量と、ドリ フトピンの復元力特性から求められる変形量を累加することで軸ばね全体の復元力特性を求めた。

アンカーボルトの復元力特性のモデル化では初期引張力 *T*_iを考慮し、初期引張力 *T*_iに達するまでは 引張変形が生じないものとした。また、アンカーボルトの軸部の断面積を用いて算定される降伏耐力 に到達した後は、ひずみ硬化の影響を考慮し、材料試験の結果を基に、アンカーボルトの材料特性か ら求められる初期剛性 _a*K*₁の 0.015 倍の剛性 _a*K*₂を与え、アンカーボルトのねじ部の断面積を用いて算 定される引張耐力まで強度上昇することとした。

ドリフトピンの復元力特性に関しては、数値解析で求めたドリフトピン単体の荷重変形関係の変形 と荷重を用いて、バイリニアでモデル化した。ここでは、5%オフセット値により求められる点を降伏 強度点 ($_{dv}\delta_{y}, _{dv}p_{y}$)、20mm 変位時を終局強度点 ($_{dv}\delta_{u}, _{dv}p_{u}$)とした。なお、初期剛性は終局強度 $_{dv}p_{u}$ の 0.1 倍の点と 0.4 倍の点を結んだ直線の傾きとした。

(アンカーボルトの降伏耐力)

$$_{ha}P_{y} = _{h}n_{a} \cdot _{a}a_{s} \cdot _{a}\sigma_{y}$$

ここで、 $hn_a: 水平接合部におけるアンカーボルトの本数、<math>aa_s: アンカーボルトの軸部の断面積、aoy: アンカーボルトの降伏強度である。$

(アンカーボルトの引張耐力)
$$h_a P_u = {}_h n_a \cdot {}_a a_{es} \cdot {}_a \sigma_u$$

(3.1.30)

(3.1.29)

ここで、 $hn_a: 水平接合部におけるアンカーボルトの本数、<math>aaes: アンカーボルトのねじ部の断面積、 a\sigmau: アンカーボルトの引張強度である。$

(アンカーボルトの初期剛性)

$$_{a}K_{1} = \frac{_{h}n_{a} \cdot _{a}a_{s} \cdot _{a}E_{s}}{L_{a}}$$

(3.1.31)

ここで、 $hn_a: 水平接合部におけるアンカーボルトの本数、aas: アンカーボルトの軸部の断面積、aEs: アンカーボルトのヤング係数、<math>L_a: アンカーボルトの引張長さ(ナット間の距離)である。$

(ドリフトピンの降伏耐力)

$$_{hdv}P_y = {}_h n_d \cdot {}_{dv} p_y$$

(3.1.32)

ここで、_hn_d:水平接合部におけるドリフトピンの本数、_{dv}p_y:ドリフトピン1本あたりの鉛直方向の 降伏強度である。

(ドリフトピンの終局耐力)

 $_{hdv}P_u = {}_h n_d \cdot {}_{dv} p_u$

(3.1.33)

ここで、hnd:水平接合部におけるドリフトピンの本数、dvpu:ドリフトピン1本あたりの鉛直方向の 終局強度である。

水平接合部におけるせん断伝達は、実験結果との整合性も踏まえ、A タイプ、B タイプのいずれに ついても、CLT 袖壁に作用する水平せん断力を RC はりに直接伝達する形とした。このうち、B タイ プに関しては、前述の 3.1.3 において、CLT 袖壁の寸法比 (*D_w/h*₀) に配慮することで、摩擦による水 平せん断力の伝達が行えることを確認しており、小変形時(一次設計)には特別な検討を行う必要は ない。また、大変形時(二次設計)についても、滑り止めを用いた水平せん断力の伝達に関する保証 設計を行うことから、RC はりに直接伝達する形でモデル化を行っても問題ないものと判断できる。

一方、Aタイプに関しては、アンカーボルトによる引張力や鉛直接合部から伝達される鉛直せん断 力が作用するため、Bタイプと異なり、摩擦のみで全ての水平せん断力を伝達できない可能性がある。 本来であれば、RC はりへの伝達分に摩擦係数による上限を設け、残りの水平せん断力は鉛直接合部 を介して RC 柱に伝達するようにモデル化を行うことが望ましいが、このようなモデル化を行うこと は難しいため、本マニュアルでは、保証設計において、鉛直接合部が水平せん断力を伝達する上で十 分なせん断耐力を有している場合には、CLT 袖壁に作用する水平せん断力を全て RC はりに伝達して もよいものとした。

なお、いずれの場合も、摩擦により水平せん断力の大部分を伝達することを想定し、水平接合部に はせん断変形が生じないものと仮定している。

(詳細モデルの場合)

詳細モデルでは、CLT 袖壁の断面の分割数は、RC はりとの接続を考慮し、簡易モデルよりも少な い4としている。詳細モデルの軸ばね(支圧特性、アンカーボルト)の復元力特性は、簡易モデルに おけるファイバー要素の復元力特性と同様に設定する。なお、水平接合部のせん断ばねに関しては、 CLT 袖壁内に圧縮ストラットが形成される状況を想定し、図 3.1.24、図 3.1.25 に示すように、加力方 向を考慮して、上下の仕口面で異なる水平位置に設置した。CLT 袖壁の断面中心にせん断ばねを取り 付けた場合の解析結果と比較すると、せん断ばねの取り付け位置を断面端部に移動することで、実験 の水平荷重-全体変形角関係の評価精度が向上することが確認されている。

(f) 鉛直接合部

Bタイプでは RC 柱-CLT 袖壁間における応力伝達はないものと仮定するため、鉛直接合部のモデ ル化を行う必要はないが、A タイプではせん断ばねによるモデル化が必要となる。ここでは、鉛直接 合部におけるドリフトピン以外の構成要素(接合金物や寸切りボルト、CLT 袖壁等)に関しては、変 形が十分に小さいものと考え、せん断ばねの復元力特性としてドリフトピンの変形のみを考慮するこ ととした。

図 3.1.42 に鉛直接合部のせん断ばねの復元力特性を示す。ドリフトピンの復元力特性に関しては、 数値解析で求めたドリフトピン単体の荷重変形関係の変形と荷重を用いて、バイリニアでモデル化し た。ここでは、5%オフセット値により求められる点を降伏強度点(d₄*d*₉*x*, d₄*p*₉)、20mm 変位時を終局強 度点(d₄*d*₄*x*, d₄*p*₄)とした。なお、初期剛性は終局強度 d₄*p*₄の 0.1 倍の点と 0.4 倍の点を結んだ直線の傾 きとした。なお、ドリフトピンの降伏耐力や終局耐力が、CLT 袖壁の鉛直断面のせん断耐力を上回る 場合には、その時点で耐力を頭打ちとし、一定の耐力を保持するものとした。

A タイプでは、鉛直接合部を介した水平せん断力の伝達は行わない(鉛直接合部の軸ばねの剛性は ゼロとする)ようにモデル化を行う。これにより、RC 柱、CLT 袖壁に作用する水平せん断力が各階で

B-113

一定となるため、各部材のモデル化や実験結果の検定の負担が軽減される。一方で、3.1.3 で述べたように、A タイプの水平接合部では摩擦のみで水平せん断力の全てを伝達することができないので、3.1.8 で後述する保証設計により、鉛直接合部のドリフトピンやウェブ材、寸切りボルトの耐力から算定する式(3.1.79)の鉛直接合部の水平せん断耐力 vhQuが、式(3.1.78)に示す設計用せん断力を上回ることを別途確認する必要がある。なお、本マニュアルでは、式(3.1.36)に示す CLT 袖壁のせん断耐力の算定では、CLT の面内せん断の基準強度をそのまま用いる方針とした。その理由については、後述の 3.1.8 における保証設計の記述を参照されたい。

(ドリフトピンの降伏耐力)

$$_{vdv}Q_y = {}_v n_d \cdot {}_{dv} p_y$$

ここで、vnd:鉛直接合部におけるドリフトピンの本数、dvpy:ドリフトピン1本あたりの鉛直方向の降伏強度である。

(ドリフトピンの終局耐力)

 $_{vdv}Q_u = {}_v n_d \cdot {}_{dv} p_u$

ここで、_{vnd}: 鉛直接合部におけるドリフトピンの本数、_{dvpu}:ドリフトピン1本あたりの鉛直方向の 終局強度である。

(CLT 袖壁の鉛直断面のせん断耐力)

$$_{wv}Q_{su} = t_{w} \cdot h_{0} \cdot F_{sI}$$

(3.1.36)

(3.1.34)

(3.1.35)

ここで、 t_w : CLT 袖壁の厚さ、 h_0 : CLT 袖壁の内法高さ、 F_{sl} : CLT の面内せん断の基準強度である。

(詳細モデルの場合)

詳細モデルでは、鉛直接合部を3分割しており、計3本のせん断ばねが必要となるため、図3.1.42 に示すドリフトピンの復元力特性のせん断力を3で割った復元力特性を使用する。また、簡易モデル では、図3.1.42(b)に示すように、鉛直接合部のせん断ばねのせん断力に、CLT 袖壁の鉛直断面のせん 断耐力による上限を設けているが、詳細モデルでは、CLT 袖壁のブレース要素により、CLT 袖壁のせ ん断降伏が自動的に考慮されるため、このような上限は設けていない。

3.1.5 保有水平耐力計算を行う場合の考え方1 (構造計算フロー)

図 3.1.43 に、本マニュアルにおいて、RC ラーメンに CLT 袖壁を挿入する場合の保有水平耐力計算 における構造計算フローを示す。ここでは、図 3.1.12 で示した災害拠点総合プロジェクトにおける構 造計算フロー^[3.1.1]を参考にした。

本マニュアルでは、CLT 袖壁付き RC ラーメンの主たる構造要素は RC ラーメンと考えている。そ のため、混構造建築物としての構造計算を行う場合は、RC 構造に関する規定を読み替えて、耐震性能 の評価を行うことを原則とする。この構造形式では、RC と CLT という特性の異なる材料を組み合わ せることになるため、通常の RC 構造と比較して、設計上のばらつきや想定外の挙動が生じやすいも のと推測される。したがって、現状では、より安全側の仮定に基づいて、各部材に作用する応力を適 切に評価した上で保証設計を実施し、目標とする全体崩壊形が確実に形成されるように十分な配慮を 行う必要がある。そこで、当面はルート3による検討を行うことを原則とし、ルート1やルート2に よる検討を行うことは想定しない。

図 3.1.43 に示すように、本マニュアルでは、後述する部材種別判定、構造特性係数、保証設計を参 考に、CLT 袖壁付きの RC ラーメンについて、通常の RC 造建築物と同様に、許容応力度設計、保有 水平耐力計算を満足することを求めている。また、現状では、CLT 袖壁付き RC ラーメンの地震時挙 動の解明が必ずしも十分に進んでいないことを鑑み、災害拠点総プロの構造計算フローを参考に、ル ート2 において採用されている剛性率や偏心率に関する条件を付与し、平面的、立面的にバランスの よい建築物への適用に限定することとした。これと合わせて、保有水平耐力計算において、全体崩壊 形が形成されることの確認も同時に行うこととしている。一方で、本構造形式については、災害拠点 として使用されるようなより高い耐震性能が求められる建築物ではなく、一般的な共同住宅への適用 を想定していることから、災害拠点総合プロジェクトで求めていた層間変形角や塑性率の制限に関す る規定は設けていない。

また、災害拠点総合プロジェクトでは、建築基準法に基づき大地震時に対する安全性が確保されて いる靱性型架構に、袖壁、腰壁、垂壁を付帯させることで大地震時における損傷を低減することを目 的としていることから、壁を取り除いた RC ラーメンについても、保有水平耐力計算を満足すること を求めている。上述したように、本マニュアルでは、CLT 袖壁付き RC ラーメンの主たる構造要素は RC ラーメンと考えており、CLT袖壁と比較して、RC はりや柱の断面が極端に小さくなった場合には、 十分な耐震安全性の確保が困難となる可能性がある。また、後述する部材種別の判定方法として、CLT 袖壁を RC 耐力壁とみなす方法を示しているが、CLT 袖壁は政令 78 条の2 に示す RC 耐力壁の構造規 定を満足していないため、構造部材として RC 耐力壁と同等の扱いを行ってよいかも現状では明確で ない。そこで、本マニュアルでは、安全側の配慮として、災害拠点総合プロジェクトと同様に、CLT 袖壁を取り除いた RC ラーメンについても二次設計における保有水平耐力計算の一連の検討を満足す る (少なくとも *D*=0.3 相当の保有水平耐力を有している) ことを求めることとした。なお、災害拠点 総合プロジェクトと同様に、本マニュアルにおいても、袖壁を取り除いた RC ラーメンについて、一 次設計における許容応力度計算までは求めていないが、CLT 袖壁の設置が RC ラーメンの建設と同時 期に行われない (RC ラーメンの建設後に行われる) ことも想定されるため、状況に応じて検討の必要 性を判断することが望ましい。

また、本マニュアルでは詳細については割愛するが、一次設計の許容応力度計算に関しては、3.1.4 に示す解析モデルによる応力解析を実施した上で、RC及びCLTの準拠する規基準にしたがって、せ ん断、曲げ、付着、定着等に関する検討を行うことになる。

図 3.1.43 本マニュアルにおける保有水平耐力計算における構造計算フロー

3.1.6 保有水平耐力計算を行う場合の考え方2 (CLT 袖壁の部材種別の判定)

ここでは、RC ラーメンに CLT 袖壁を挿入する場合の CLT 袖壁の部材種別判定として、CLT 袖壁を RC 袖壁付き柱の一部とみなして部材種別の判定を行う方法と、CLT 袖壁を RC 耐力壁とみなして部 材種別の判定を行う方法を示す。

(a) CLT 袖壁を RC 袖壁付き柱の一部とみなして部材種別の判定を行う場合

RC 柱と CLT 袖壁を接合材を介して緊結する A タイプの場合、両者はある程度一体となって挙動す るため、部材種別の判定は RC 造の袖壁付き柱に準じて行うのが妥当である。また、B タイプに関し ては、RC 柱と CLT 袖壁の緊結は行われていないが、RC 柱に取り付く RC はりの応力や変形は A タ イプに近い状態になるため、A タイプと同様に取り扱うことができるものと推測される。なお、本マ ニュアルでは、骨組解析において、RC 柱と CLT 袖壁を別々の部材(線材)としてモデル化を行うた め、袖壁付き柱としての評価を行う場合には、各部材に作用する応力の集約が必要となる。

表 3.1.3 に今回の検討で提案した CLT 袖壁付き RC 柱の部材種別判定方法の提案を示す。また、表 3.1.4 に RC 造のルート 3 の構造計算に関係する告示(昭和 55 建告第 1792 号第 1・第 4)における柱 の部材種別の区分^[3.1,4]を、表 3.1.5 に RC 造の袖壁付き柱の部材種別判定に関する文献[3.1.4]の解説を 示す。RC 造の袖壁付き柱の部材種別判定では、袖壁付き柱としての耐力(曲げ終局モーメント、せん 断終局耐力)は、柱と袖壁が一体で挙動するものとして計算を行い、 h_0/D の算定に用いる Dの値や t_0/F_c の算定に用いる τ_u の値は袖壁の影響を考慮して算定する。一方で、 σ_0/F_c の算定に用いる σ_0 の値

以下に、CLT袖壁付き RC 柱の部材種別判定方法の提案に関する考え方を示す。なお、表 3.1.3、表 3.1.4 に記載があるように、本提案を適用する際には、「せん断破壊、付着割裂破壊及び圧縮破壊その 他の構造耐力上支障のある急激な耐力の低下のおそれのある破壊を生じないこと」を確認する必要が あり、CLT袖壁に関しても、後述する保証設計を行う必要がある。また、*D*。算定時に RC 柱に塑性ヒンジが形成されず、RC 柱や CLT袖壁で脆性破壊が生じないことが確認できた場合には、表 3.1.4 に示す第4の規定の第一号に従い、CLT 袖壁付き RC 柱に取り付く RC はりの種別を部材種別に用いてよ いが、3.1.4 で示したように、骨組解析におけるモデル化では、RC はり端に二つの塑性ヒンジを設け ることになり、断面の位置によって、RC はりに作用するせん断力の大きさが異なるため、より厳しい 条件で部材種別の判定を行う必要がある。詳しくは、後述の保証設計において解説する。

・ ho/D について

CLT 袖壁付き RC 柱でも、 h_0/D の値が小さくなるにつれ、 CLT 袖壁端に生じる圧縮ひずみが大き くなり、脆性的な破壊が生じやすくなるものと考えられるため、RC 造の袖壁付き柱に準じて、D の値 に圧縮側の CLT 袖壁の全せいを考慮することとした。参考に架構実験の試験体について、 h_0/D の値を 計算すると、1600mm/(400mm+650mm)=1.52 となり、部材種別としては FC 相当となる。なお、 RC 造の袖壁付き柱に準じて、 h_0/D の $2M/(Q\cdot d)$ への置き換えは行わないものとする。

・ σ_0/F_c について

一般的な袖壁付き柱では、変形角の増大に伴って、袖壁に作用する圧縮軸力は大きく、柱に作用する 圧縮軸力は小さくなる。RC 造の袖壁付き柱では、袖壁のコンクリートが曲げ圧縮力を受け、一部の コンクリートの剥落等が生じた場合でも必要な軸耐力を保持できるように、のの算定の際に袖壁の影 響を無視し、D。算定時の軸力を柱の断面積で除した値で求めている。CLT 袖壁付き RC 柱に関しても、 RC 柱のみで必要な耐震性能を確保することを求めているので、RC 柱、CLT 袖壁に作用する軸力を加 算して求めた袖壁付き柱の軸力と RC 柱に作用する軸力の大きい方を、RC 造の袖壁付き柱に準じて、 柱の断面積で除した値で求めることとした。

・pt について

RC 柱の付着割裂破壊が生じると、CLT 袖壁付き RC 柱としても、必要な構造性能を確保すること が難しくなるため、RC 造の袖壁付き柱に準じて、同様の検討を行うこととした。

・ τ_u/F_c について

RC 造の袖壁付き柱では、 τ_u の値を D_s 算定時のせん断力を柱と壁の断面積の和で除して計算した数値としており、袖壁によるせん断伝達を考慮して、部材種別の判定を行っている。CLT 袖壁付き RC柱では、RC柱と CLT 袖壁を別々にモデル化しており、それぞれに作用するせん断力を算定することは可能であるが、Aタイプの場合、材端において、CLT 袖壁に作用する水平せん断力を RC柱を介して上下階に伝達する形を想定していること、また、CLT 袖壁部分については、靱性を確保するために必要となる τ_u / F_c の値(ここで、 F_c はコンクリートではなく、CLT の圧縮強度を想定している)が不明であること、CLT 袖壁が負担する水平せん断力に見合った耐力を RC柱にも付与することを意図し、部材種別判定においては、CLT 袖壁の寄与分を無視し、RC柱の断面積のみを用いて、 τ_u の算定を行うこととした。なお、RC 造の腰壁、垂れ壁付きはりに関しては、RC 造の袖壁付き柱とは異なり、RC はりの断面積のみを用いて、 τ_u の算定を行っており、本提案と同じ手法となっている。

	破壊の形式	h ₀ /Dの 数値	$\sigma_0/F_cの数値$	ptの 数値	τ _u /F _c の 数値	種別
条件	せん断破壊、付着割裂破壊及び圧縮破壊その他の構	2.5 以上	0.35 以下	0.8 以下	0.1 以下	FA
	造耐力上支障のある急激	2.0 以上	0.45 以下	1.0 以下	0.125 以下	FB
	な耐力の低下のおそれのある破壊を生じないこと。	_	0.55 以下	—	0.15 以下	FC
	FA、FB 又はFC のいずれにも該当しない場合					FD

表 3.1.3 CLT 袖壁付き RC 柱の種別の提案

ここで、 h_0 :柱の内のり高さ、D: 圧縮側の CLT 袖壁の全せいと RC 柱のせいの和、 σ_0 : Ds 算定時の軸力(RC 柱単独が負担する軸力と CLT 袖壁付き RC 柱が負担する軸力の大きい方)を柱の断面積で除した値、 F_c : コンクリートの設計基準強度、 p_t : 柱部分の引張主筋断面積を柱の断面積で除した値、 τ_u : Ds 算定時のせん断力を柱の断面積で除して計算した数値である。

表 3.1.4 柱及びはりの種別(鉄筋コンクリート造)^[3.1.4]

第4 柱及びはりの大部分が鉄筋コンクリート造である階について Ds を算出する方法

柱及びはりの大部分が鉄筋コンクリート造である階にあっては、次に定める方法により Dsを算出するものとする。

- 一 柱及びはりの種別を、次の表に従い、柱及びはりの区分に応じて定めること。ただし、崩壊形に達す る場合に塑性ヒンジを生じないことが明らかな柱の種別は、表によらずはりの種別によることとし、種 別の異なる柱及びはりが接合されている場合における柱の種別(崩壊形に達する場合に塑性ヒンジを生 じないことが明らかな柱の種別を含む。)は、当該柱及びはりの接合部において接合される部材(崩壊形 に達する場合に塑性ヒンジが生じる部材に限る。)の種別に応じ、次に定めるところによること。
 - (1) FC 及び FD の種別が存在しない場合にあっては FB とする。
 - (2) FD の種別が存在せず, FC の種別が存在する場合にあっては FC とする。
 - (3) FD の種別が存在する場合にあっては FD とする。

柱及びはりの区分							
部 材	柱及びはり	柱				はり	柱及びは りの種別
条 件	破壊の形式	ho/Dの 数値	の /Fcの 数値	<i>p</i> tの 数値	$\tau_u/F_c の数値$	τ_u/F_c の 数値	
	せん断破壊、付着割裂破壊及び圧縮破壊その	2.5以上	0.35以下	0.8以下	0.1以下	0.15以下	FA
	他の構造耐力上支障の ある急激な耐力の低下 のおそれのある破壊を	2.0以上	0.45以下	1.0以下	0.125以下	0.2以下	FB
	生じないこと。	_	0.55以下	_	0.15以下	_	FC
FA, FB 又は FC のいずれにも該当しない場合							FD
 この表において, ho, D, oo, F_c, p_t及び t_uは, それぞれ次の数値を表すものとする。 ho 柱の内のり高さ(単位 センチメートル) D 柱の幅(単位 センチメートル) の D_sを算定しようとする階が崩壊形に達する場合の柱の断面に生ずる軸方向応力度(単位1 平方ミリメートルにつきニュートン) p_t 引張り鉄筋比(単位 パーセント) F_c コンクリートの設計基準強度(単位 1平方ミリメートルにつきニュートン) τ_u D_sを算定しようとする階が崩壊形に達する場合の柱又ははりの断面に生ずる平均せん断応力 度(単位 1平方ミリメートルにつきニュートン) 二 柱の上端又は下端に接着するはりについて,崩壊形に達する場合に塑性ヒンジが生ずることが 明らかな場合にあっては,表中の h₀/Dに替えて2M/(Q・D)を用いることができるものとする。 この場合において,Mは崩壊形に達する場合の当該柱の最大曲げモーメントを,Qは崩壊形に達 する場合の当該柱の最大せん断力を表すものとする。 							

表3.1.5 袖壁付き柱の部材種別判定に関する解説(鉄筋コンクリート造)^[3.1.4]

f)構造耐力上主要なそで壁が取り付く柱及び腰壁,垂れ壁が取り付くはりについては,これらの 壁が取り付くことによって塑性変形能力,脆性破壊現象に影響を及ぼすが,現状の知見では正 確な評価が困難である。そこで,柱,はりの指標を基本として部材種別を安全側に評価すること を考えると,そで壁付き柱の場合,Dは柱せいに圧縮側となるそで壁の長さを加えた数値, τ_u は D_s 算定時のせん断力を柱と壁の断面積の和で除して計算した数値⁵⁾, σ_0 は D_s 算定時の軸力を柱 の断面積で除した数値, p_t は柱部分の引張主筋断面積を柱の断面積で除した数値とし,柱と同 様に判定すればよい。このとき, $h_0/D \approx 2M/(Q\cdot d)$ に替えないこととする。また,腰壁,垂れ壁 付きはりの場合, τ_u は D_s 算定時のせん断力をはりの断面積で除して計算した数値^{5,6)}とし,は りと同様に判定すればよい。

(b) CLT 袖壁を RC 耐力壁とみなして部材種別の判定を行う場合

RC柱と CLT 袖壁を緊結しない B タイプでは、RC柱と CLT 袖壁を別々の部材としてモデル化を行っており、両者の緊結も行っていないことから、CLT 袖壁を RC 耐力壁に準じて、部材種別の判定を行うことも考えられる。表 3.1.6 に鉄筋コンクリート造のルート 3 の構造計算に関係する告示 昭和 55 建告第 1792 号第 1・第 4 における耐力壁の部材種別の区分^[3.1.4]を示す。脆性的な破壊が生じないことを保証設計で確認している場合、RC 耐力壁の部材種別判定は τ_u/F_c の値によって判定され、WA~WD に分類される。

一方、文献[3.1.7]を参照すると、令第82条の3第二号におけるCLT建築物におけるルート3の構造 計算では、仕様によってD_sの値が0.40~0.55(仕様を満足しない場合には0.75)に変動するが、終局 時の検討としては、以下の式(3.1.37)~式(3.1.39)示すような検定を一律に求めており、応力レベルの違 いを考慮した部材種別の判別は行われていない。

耐力壁の区分					
部材	耐力壁	壁式構造以外の 構造の耐力壁	壁式構造の耐力壁	耐力壁 の種別	
条件	破壊の形式	τ_u/F_c の数値	τ_u/F_c の数値	-	
	せん断破壊その他の構造耐力上支	0.2以下	0.1以下	WA	
	障のある急激な耐力の低下のおそ	0.25以下	0.125以下	WB	
わ	れのある破壊を生じないこと。	—	0.15以下	WC	
WA, WB 又は WC のいずれにも該当しない場合					
この表において、Tu及び Fcは、それぞれ前号の表に規定するTu及び Fcの数値を表すものとする。					

表 3.1.6 耐力壁の種別 (RC 造)^[3.1.4]

二 耐力壁の種別を、次の表に従い、耐力壁の区分に応じて定めること。

・曲げ応力、圧縮応力に関する検定

$$\frac{{}_{w}\sigma_{c}}{{}_{t}F_{c}} + \frac{{}_{w}\sigma_{h}}{{}_{t}F_{t}} + \frac{{}_{w}\sigma_{h}}{{}_{t}F_{bI}} \leq 1.0 \quad \text{(3.1.37)}$$

$$(3.1.37)$$

$$(3.1.37)$$

$$(3.1.37)$$

$$(3.1.37)$$

$$(3.1.37)$$

$$(3.1.37)$$

$$(3.1.37)$$

$$(3.1.37)$$

$$(3.1.37)$$

$$(3.1.38)$$

・せん断応力に関する検定

$$\frac{w\tau_I}{tF_{sI}} \le 1.0$$

(3.1.39)

ここで、 $w\sigma_c$ 、 $w\sigma_h$ 、 $w\sigma_h$ 、 $w\tau_l$: CLT パネルに作用する圧縮応力度、引張応力度、曲げ応力度、せん断応力度、 F_c 、 F_t 、 F_{bl} 、 F_s : CLT の圧縮、引張、面内曲げ、面内せん断の基準強度、 F_k : CLT の圧縮の基準強度から算定される座屈強度、 D_w 、 t_w : CLT パネルのせい、厚さ、 N_w : CLT パネルの軸力である。

ここで、単独の構造部材として、CLT 袖壁を部材種別に関する検討を行うために、本検討で実施し た部材実験及び架構実験の実験試験体を対象とした簡易モデルを用いた骨組解析の結果を図 3.1.44、 図 3.1.45 に示す。図中には、RC ラーメン内に設置された CLT 袖壁の軸耐力比(曲げ圧縮合力/軸耐 力、ここでは部材種別判定等に用いられる軸力比とは異なり、断面に作用する軸力ではなく、曲げ圧 縮合力を用いた算定を行っているため、区別した記載としている)、せん断耐力比(せん断力/せん断 耐力)の推移を示しており、試験体 AS、BS、A、B は曲げ圧縮による CLT 袖壁端部の損傷が確認さ れた試験体、試験体 AD は CLT 袖壁のせん断降伏に伴うラミナ間のずれが確認された試験体である。

(c) 試験体 AD 図 3.1.44 部材実験を対象とした簡易モデルによる骨組解析の一例

図3.1.45 架構実験を対象とした簡易モデルによる骨組解析の結果の一例

部材試験体 AS では、軸耐力比が 9 割程度、また、架構試験体 A、B でも、作用する圧縮軸力が大 きい1 階袖壁において、軸耐力比が 7~8 割程度となっており、通常の RC 耐力壁や CLT 部材と比較 して、軸力比が高い状態にあることが分かる。なお、現行の RC 耐力壁の部材種別判定では軸力比が 検討項目に入っていないが、これは通常の RC 耐力壁は軸力比が比較的小さい状況で使用されること を想定しているものと考えられ、RC 柱や RC 袖壁付き柱では、軸力比が 0.55 を上回ると FD の判定 となることから、CLT 袖壁を耐力壁とみなして部材種別判定を行う場合には、軸力比の影響を評価す る必要があるものと考えられる。一方で、高軸力下における CLT 耐力壁の変形性能に関する知見は現 状では十分でなく、靱性能を確保するための軸力比の閾値を設定するのは難しい状況にあることを踏 まえると、現状では、RC 耐力壁の部材種別に当てはめると、CLT 耐力壁の部材種別は WD に相当す るものとして、構造計算を行うのが妥当と考えられる。

ただし、図 3.1.44、図 3.1.45 に示すように、本検討で実施した部材実験の試験体 AS、BS 及び架構 実験の試験体 A、B では、CLT 袖壁が大きい圧縮軸力を受けた状態であったにも関わらず、変形角 *R* =1/50rad 付近まで、CLT 袖壁に目立った損傷は見られず、耐力低下も生じていない。また、部材実験 の試験体 AD では、CLT 袖壁がせん断耐力に到達し、ラミナ間のずれ変形が生じるモードIIIの破壊性 状を示したが、*R*=1/20rad まで耐力低下がほとんど確認されていないことから、実質的には WC 相当 以上の耐震性能を有しており、本マニュアルに示す手法は安全側の評価となるものと考えられる。な お、構造実験で確認された CLT 袖壁の変形性能を陽な形で評価する場合は、後述する限界耐力計算を 行うことが望ましい。

一方で、表 3.1.7 の政令第78条の2に示すように、RC 耐力壁では、厚さや配筋、開口部補強等に 関する規定があるが、CLT 袖壁を RC 耐力壁と同等に構造部材として取り扱う際に、どのような規定 を満足する必要があるかは明らかにされていない。そのため、本マニュアルでは、図 3.1.43 で示した 構造計算フローを参考に、CLT 袖壁を取り除いた RC ラーメンについても二次設計における保有水平 耐力計算の一連の検討を満足することを求めている。

表 3.1.7 耐力壁の構造規定(鉄筋コンクリート造)^[3.1.4]

(耐力壁)
第78条の2 耐力壁は、次に定める構造としなければならない。
一 厚さは、12センチメートル以上とすること。
二 開口部周囲に径12ミリメートル以上の補強筋を配置すること。
三 径9ミリメートル以上の鉄筋を縦横に30センチメートル(複配筋として配置する場合においては,45
センチメートル)以下の間隔で配置すること。ただし,平家建ての建築物にあつては,その間隔を35セ
ンチメートル(複配筋として配置する場合においては,50センチメートル)以下とすることができる。
四 周囲の柱及びはりとの接合部は、その部分の存在応力を伝えることができるものとすること。
2 壁式構造の耐力壁は、前項の規定によるほか、次に定める構造としなければならない。
一 長さは、45センチメートル以上とすること。
二 その端部及び隅角部に径12ミリメートル以上の鉄筋を縦に配置すること。
三 各階の耐力壁は,その頂部及び脚部を当該耐力壁の厚さ以上の幅の壁ばり(最下階の耐力壁の脚部に
あつては、布基礎又は基礎ばり)に緊結し、耐力壁の存在応力を相互に伝えることができるようにする
こと。

3.1.7 保有水平耐力計算を行う場合の考え方3 (構造特性係数の設定)

表 3.1.8、表 3.1.9 に鉄筋コンクリート造のルート 3 の構造計算に関係する告示 昭和 55 建告第 1792 号第 1・第 4 における剛節架構の場合と剛節架構と耐力壁を併用した場合の構造特性係数の値^[3.1.4]を 示す。CLT 袖壁付き RC 柱を RC 袖壁付き柱に置き換えて部材種別の判定を行う場合には表 3.1.8 に従 って、CLT 袖壁を独立した RC 耐力壁に置き換えて部材種別の判定を行う場合には表 3.1.9 に従って、 構造特性係数の算定を行えば良い。

表 3.1.8 に示すように、CLT 袖壁付き RC 柱を RC 袖壁付き柱に置き換える場合は、柱及びはりの部 材群としての種別に応じて、 D_s の値が 0.30~0.45 の間で推移することになるが、柱脚に塑性ヒンジが 形成される 1 階では、 h_0/D の制限によって CLT 袖壁付き RC 柱を上位のランクとすることは難しいた め、 D_s の値は 0.4 前後の値となることが推測される。また、表 3.1.9 に示すように、CLT 袖壁を RC 耐 力壁に置き換える場合は、部材種別を WD として構造計算を行うため、 D_s の値は、柱及びはりの部材 群としての種別や、耐力壁における水平耐力の分担比率 β_u に応じて 0.40~0.55 の間で推移するため、 CLT 袖壁付き RC 柱を RC 袖壁付き柱に置き換える場合と比較すると、 D_s の値はやや大きくなる傾向 がある。

表 3.1.8 剛節架構の場合の部材群と構造特性係数の関係(RC 造の場合)^[3.1.4]

四 各階の Dsは、次のイからハまでのいずれかによって定める数値とすること。

イ 耐力壁を設けない剛節架構とした場合にあっては,前号の規定により定めた当該階の柱及びはりの 部材群としての種別に応じ,次の表に掲げる数値以上の数値とする。

柱及びはりの部材群としての種別	Dsの数値
А	0.3
В	0.35
С	0.4
D	0. 45

表 3.1.9 剛節架構と耐力壁を併用した場合の部材群と構造特性係数の関係(RC 造の場合)^[3.1.4]

ハ 剛節架構と耐力壁を併用した場合にあっては,前号の規定により定めた当該階の柱及びはり並びに 筋かいの部材群としての種別に応じ,次の表に掲げる数値以上の数値とする。

			柱及びはりの部材群としての種別			
			А	В	С	D
耐力壁の	А	0<βu≦0.3の場合	0.3	0.35	0.4	0.45
部材群と		0.3<βu≦0.7の場合	0.35	0.4	0.45	0.5
別		<i>β</i> u>0.7の場合	0.4	0.45	0.45	0.55
	В	0<βu≦0.3の場合	0.35	0.35	0.4	0.45
		0.3<βu≦0.7の場合	0.4	0.4	0.45	0.5
		<i>β</i> u>0.7の場合	0.45	0.45	0.5	0.55
	С	0<βu≦0.3の場合	0.35	0.35	0.4	0.45
		0.3<βu≦0.7の場合	0.4	0.45	0.45	0.5
		<i>β</i> u>0.7の場合	0.5	0.5	0.5	0.55
	D	0<βu≦0.3の場合	0.4	0.4	0.45	0.45
		0.3<βu≦0.7の場合	0.45	0.5	0.5	0.5
		<i>β</i> u>0.7の場合	0.55	0.55	0.55	0.55
この表において、β _u は、耐力壁(筋かいを含む。)の水平耐力の和を保有水平耐力の数値で除 した数値を表すものとする。						

なお、保有水平耐力計算における D_sは、減衰性及び変形能力による地震エネルギー吸収能力に応じ た低減係数である。本マニュアルでは、CLT 袖壁が大変形時まで弾性的な挙動を示すため、CLT 袖壁 を取り付ける前の RC ラーメンと比較すると CLT 袖壁付き RC ラーメンでは減衰性能が低下するもの と推測されるが、3.1.10 で後述するように、告示で定められた等価粘性減衰定数は概ね満足できるも のと考えられること、部材実験や架構実験において、層間変形角 1/50rad に到達するまで耐力低下が 殆ど見られない安定した挙動を示していること、図 3.1.43 の構造計算フローで示したように、崩壊形 として全体崩壊形のみを許容し、剛性率や偏心率の制限も合わせて付与することで、局所的な変形の 集中も防止していることから、表 3.1.8 や表 3.1.9 で示した D_sを用いることで、十分に構造安全性を確 保できるものと考えられる。なお、CLT 袖壁付き RC ラーメンでは、CLT 袖壁が相応の応力負担をす るまでに、相応の層間変形が必要となるため、早期にせん断破壊を起こす可能性がある RC 耐力壁と の併用については、現状では想定していない。

3.1.8 保有水平耐力計算を行う場合の考え方4 (保証設計の考え方)

3.1.7 で示した構造特性係数のうち、最大 *D*_s (耐力壁を設けない剛節架構の場合は 0.45、その他の場合は 0.55) 以外の *D*_sを採用するためには、「せん断破壊、付着割裂破壊及び圧縮破壊その他の構造耐力上支障のある急激な耐力の低下のおそれのある破壊を生じないこと」を確認する必要がある。また、図 3.1.43 の構造計算フローに示したように、崩壊形として全体崩壊形のみを許容していることから、保証設計の一環として、別途、その確認を行うことも必要となる。

ここでは、架構試験体を対象とした解析事例を紹介した上で、各部材のせん断設計を行う際に必要となる設計用せん断力の算定方法と設計上の留意点を後述する。

(a) 解析事例によって求めた各部の応力状態

図 3.1.46 に架構試験体 A を対象に行った骨組解析(簡易モデル)で得られた水平荷重-全体変形角 関係、RC はりのせん断力、RC 柱、CLT 袖壁の軸力、せん断力と全体変形角の関係を示す。ここでは 比較のため、図 3.1.47 に架構試験体 A の1 階の CLT 袖壁を省略し、2 階のみに CLT 袖壁を設置した 場合の例も示しているが、3.1.3 で示したように、このような CLT 袖壁の配置は、本マニュアルでは対 象外としているので注意されたい。以下に、解析結果に基づく留意事項を示す。

崩壊機構形成後の応力増加

図 3.1.46(b)に示すように、架構試験体 A を対象とした骨組解析では、1 階柱脚および各階のはり端 に塑性ヒンジが形成された後(全体変形角 1/100rad 以降)も水平荷重が増加を続ける特徴がある。こ れは、図 3.1.46(f)に示すように、加力方向に対して引張側の RC 柱に取り付く 1、2 階の CLT 袖壁にお いて、崩壊機構形成後も圧縮軸力(図中の $_1N_{w1}$ 、 $_1N_{w3}$ 、 $_2N_{w3}$ 、 $_2N_{w3}$)が増加するためである。また、CLT 袖壁に作用する圧縮軸力のみでなく、図 3.1.46(c)に示す CLT 袖壁と接する部分の RC はりのせん断力 (図中の $_2Q_{b1}$ 、 $_2Q_{b2}$ 、 $_3Q_{b1}$)、図 3.1.46(d)に示す RC 柱の引張軸力(図中の $_1N_{c1}$ 、 $_1N_{c3}$ 、 $_2N_{c3}$)、図 3.1.46(h)に示す CLT 袖壁の鉛直せん断力(図中の $_1Q_{wv1}$ 、 $_2Q_{wv1}$)も増加している。

架構試験体 A から 1 階の CLT 袖壁を取り除いた図 3.1.47 の解析結果からも明らかなように、図 3.1.47(b)に示すように、CLT 袖壁の設置による水平剛性や水平耐力の増大効果は小さいが、1 階柱脚および各階のはり端に塑性ヒンジが形成された後(全体変形角 1/100rad 以降)は、荷重変形関係の水平荷重がほぼ頭打ちとなる傾向が見られ、また、図 3.1.47(c)~(i)に示す各部の応力も崩壊機構形成後は

ほぼ頭打ちとなっている。これは、1 階の CLT 袖壁において、上端は塑性ヒンジが形成される RC は りと接しているのに対し、下端は殆ど変形しない剛なスタブと接しているため、水平変形の増大に伴 って、CLT 袖壁に強制される軸縮みが大きくなることが原因である。したがって、図 3.1.13、図 3.1.14、 図 3.1.15 で示したように、CLT 袖壁を各階に連続的に配置する場合で、最下層の CLT 袖壁が剛強な基 礎梁(スタブ)に支持される場合には、崩壊機構形成後も、各部に作用する応力が増大することを前 提として保証設計を行う必要がある。

CLT 袖壁の圧縮軸力の負担による RC 柱の曲げ耐力の低下

架構試験体 A を対象とした骨組解析では、1 階柱脚および各階のはり端に塑性ヒンジが形成された 後(全体変形角 1/100rad 以降)も、図 3.1.46(d)で示したように、RC 柱に作用する引張軸力(図中の 1Ncl、1Nc3、2Ncl、2Nc3)が増加し続けている。これは、図 3.1.46(f)で示したように、隣接する CLT 袖壁 に作用する圧縮軸力(図中の 1Nw1、1Nw3、2Nw3、2Nw3)が増大していることが原因であるが、断面に作 用する圧縮軸力が小さくなると、RC 柱の曲げ終局モーメントも小さくなるため、全体崩壊形の形成 を保証するために、柱梁曲げ耐力比を確保する上で支障が出る恐れがある。架構実験では、柱梁接合 部の形状がト形もしくは L 形であり、RC はりに塑性ヒンジが形成されやすい状況となっているのに 対し、RC 柱の両側に RC はりが取り付く十字形接合部を含む形での加力は行っていないため、実際の 適用時には、十分な注意が必要である。

CLT 袖壁の鉛直断面におけるせん断検定

架構試験体 A を対象とした骨組解析では、図 3.1.46(h)に示す CLT 袖壁の鉛直断面に作用するせん 断力(図中の $_1Q_{wvl}, _2Q_{wvl}$)が、CLT 袖壁の鉛直断面のせん断耐力(図中の $_{wv}Q_{su}$)を上回っている。 ここで示した簡易モデルでは、支圧特性を模した CLT 袖壁端部のファイバー要素において、軸ばねの 変形が線形に分布する(平面保持仮定が成立する)ため、CLT 袖壁の鉛直断面に作用するせん断力を 制限することができず、CLT 袖壁の鉛直断面のせん断耐力(図中の $_{wv}Q_{su}$)を上回る鉛直せん断力が作 用している。実験結果や詳細モデルによる解析結果との比較により、CLT 袖壁に作用する鉛直せん断 力がせん断耐力を上回ったとしても、直ちに脆性的な破壊や解析精度の低下が生じる訳ではないが、 保証設計は満足しないことになるため、注意が必要である。

図 3.1.46 架構実験を対象とした簡易モデルによる解析結果の一例(試験体 A)

図3.1.47 架構実験を対象とした簡易モデルによる解析結果の一例(試験体A、1階の袖壁を省略)

(b) 設計用せん断力の算定

以下に本マニュアルにおける各部材(CLT 袖壁含む)の保証設計時の設計用せん断力の算定方法を 示す。設計用せん断力の算定は、告示平 19 国交告第 594 号第4 にしたがって、RC 造のはり、柱、耐 力壁における評価方法に準じて行うこととした。

はりの場合

 ${}_bQ_D = Q_0 + n \cdot Q_{M0}$

(3.1.40)

ここで、 ${}_{b}Q_{D}$:はりの設計用せん断力、 Q_{0} :単純支持とした時の常時荷重によるせん断力、 Q_{M0} : D_{s} 算定時のせん断力、n:割増係数で、部材の両端にヒンジが生ずる状態では1.1、それ以外の状態の場合には1.2とする。

柱の場合

$$_{c}Q_{D} = n \cdot Q_{M}$$

(3.1.41)

(3.1.42)

ここで、。QD:柱の設計用せん断力、QMO:Ds算定時のせん断力、n:割増係数で、部材の両端にヒンジが生ずる状態では1.1、それ以外の状態の場合には1.25とする。

耐力壁の場合

 $_{w}Q_{D} = n \cdot Q_{M0}$

ここで、wQp:耐力壁の設計用せん断力、QM0:Ds算定時のせん断力、n:割増係数で 1.25 とする。

なお、RC はりでは、部材内に最大 4 個の塑性ヒンジが形成される可能性があり、割増係数の値を どのように設定するか判断が必要になる。RC 柱フェイス位置では RC はりに作用するせん断力が CLT 袖壁に作用する軸力や鉛直接合部に作用する鉛直せん断力に依存するため、変動要因が大きいのに対 し、CLT 袖壁の端部近傍では塑性ヒンジの形成位置が概ね評価できれば RC はりに作用するせん断力 はある程度頭打ちとなるものと考えられる。そこで、RC はりの保証設計に用いる割増係数は、RC 柱 フェイス位置では安全側の配慮として 1.2、CLT 袖壁の端部近傍では RC はりの両端に塑性ヒンジが 形成されている場合は 1.1 とする。

CLT 袖壁に関しては、保証設計として割増係数 1.25 を乗じた設計用せん断力に対して、せん断破壊 が生じないことを確認することになるが、CLT パネルの幅方向のせん断の基準強度は、モード I (直 交集成板が一体となってせん断変形することにより生じるせん断応力度によるせん断破壊)もしくは モードIII(2 つの直交するラミナの交差面がずれ変形やねじり変形することで交差面に生じるせん断 力や回転力によるせん断破壊)のいずれかによって決まる^[31,7]。直交接着層数や幅方向の枚数が少な い場合はモードIIIによる破壊が支配的となるが、モードIIIによるせん断強度には 95%下側許容限界値 算出係数として 3/4 が乗じられるため、実際には 1.33 倍の平均強度が期待できることになる。RC 柱、 RC はり、RC 耐力壁のせん断強度式として用いられる式(3.1.4)、式(3.1.14)、式(3.1.43)については、実 験データベースを用いた検証により、実験値/計算値の平均値が 1.32、1.37、1.34 となることが報告 されている^[31,4]。したがって、CLT 袖壁のせん断の基準強度は、一般的な RC 部材と同等の評価精度 を有しているものと考えられることから、RC 部材で用いられる割増係数 1.25 を用いたせん断設計を 行うことで十分な余裕度が確保されることになる。

B.構造分野

なお、3.1.2 で示した架構試験体 A、B の検証では、載荷実験において全体変形角 1/25rad 付近まで 靱性に富む挙動を示したことに加え、材料試験の結果を基に、CLT のせん断強度を面内せん断力の基 準強度の 1.28 倍に割り増した値で数値解析を行ったところ、最大耐力に関する実験値/計算値の比率 が 1.1 を上回る値を示すことが確認されており、安全側の評価となっている。また、3.1.2 で示した CLT 袖壁においてラミナ間のずれ変形が生じた部材試験体 AD の検証では、CLT の面内せん断の基準強度 を用いた数値解析を行ったところ、最大耐力に関する実験値/計算値の比率が 1.0 に近い値を示した ことから、耐力としての余裕度は小さい。しかしながら、層間変形角 1/20rad 付近まで靱性に富む挙動 を示し、脆性的な破壊が生じなかったことも踏まえ、本マニュアルでは、CLT の面内せん断の基準強 度を用いた検討を行った場合でも、構造安全性が確保できるものと判断したが、CLT のラミナがせん 断破壊するモード I の場合にも靱性に富む挙動が期待できるかどうかは検証できていないため、当面 は必要に応じて、面内せん断の基準強度を低減して用いる等、十分に余裕を持った設計を行うことが 望ましい。

(RC 耐力壁のせん断耐力^[3.1.4]) _wQ_{su} = $\begin{cases} \frac{0.068 p_{te}^{0.23}(F_c + 18)}{\sqrt{M/(Q \cdot D) + 0.12}} + 0.85\sqrt{p_{wh}\sigma_{wh}} + 0.1\sigma_0 \end{cases} t_e j$

(3.1.43)

また、後述する「設計上の留意点」の概要も示す。

設計上の留意点1:崩壊機構形成後の応力増加

崩壊機構形成後も応力変動が大きい部材があり、十分なせん断余裕度を確保することが難しい場合 には、設計用せん断力の設定が困難となるため、当該部材の部材種別を FD もしくは WD として取り 扱う。この際、本マニュアルにおける安全側の配慮として、保有水平耐力の算定時以降も荷重増分解 析を継続し、崩壊機構形成後、ある程度の大きさの変形まで、脆性的な破壊が生じないことを確認す ることとする。

設計上の留意点2:CLT 袖壁の鉛直断面におけるせん断余裕度の確認

CLT 袖壁に作用する圧縮軸力が大きい場合、鉛直断面には水平断面よりも大きなせん断力が作用す る可能性があるため、式(3.1.42)に示す CLT 袖壁のせん断余裕度の確認は、水平断面のみでなく、鉛直 断面に対しても実施する。

設計上の留意点3:CLTの材料強度のばらつきの影響

本マニュアルでは、保証設計において、CLTの材料強度のばらつきの影響を考慮することを必須と はしないこととした。但し、CLTの実強度を把握することは、架構内の応力状態を正しく評価する上 で重要であるため、必要に応じて何らかの検討を行うことが望ましい。

設計上の留意点4:全体崩壊形の確認

本マニュアルでは、CLT 袖壁を挿入した RC ラーメンにおいて、全体崩壊形が形成されることを確認することとしているが、CLT 袖壁に圧縮ストラットが形成されることで、RC 柱が負担する圧縮軸力が小さくなるため、柱はり曲げ耐力比を確保する上で注意が必要となる。

B-131

(c)設計上の留意点1(崩壊機構形成後の応力増加)

図 3.1.48 に CLT 袖壁付き RC ラーメンで想定される全体崩壊形のパターンを示す。図 3.1.48(a)に示 すように全層に CLT 袖壁を設け、1 階柱脚および各階の梁端に塑性ヒンジを計画する Casel の場合、 図 3.1.46 で示した数値解析のように、崩壊機構の形成後も RC はりや RC 柱、CLT 袖壁に作用するせ ん断力が増大を続けることになる。したがって、保有水平耐力計算では、通常、荷重増分解析におい て、崩壊機構の形成後に変形増分に対する荷重増分が十分に小さくなり、各部材に作用する応力が概 ね一定となった段階で保証設計を行うことになるが、Casel の場合は崩壊機構の形成後も変形増分に 対する荷重増分が大きく、各部材に作用する応力も変動を続けることから、荷重増分解析におけるど の段階の応力を用いて、保証設計を行うかが問題となる。一方で、保有水平耐力計算では、地震時の 最大変形が陽に現れる設計手法ではないことに加え、水平変形の増大に伴って、P-ム効果の影響等も 無視できなくなることから、解析精度自体の信頼性も低下するものと考えられる。

以上を踏まえ、本マニュアルにおいては、保証設計におけるせん断余裕度が十分に大きいと判断される場合を除き、崩壊機構形成後も応力変動が大きい部材については、設計用せん断力の算定が難しいことから、当該部材の部材種別をFDもしくはWDとして取り扱うものとする。この際、保有水平耐力の算定時に、各部材にせん断破壊、付着割裂破壊および圧縮破壊等の構造耐力上支障がある急激な耐力の低下のおそれのある破壊が生じていないことを確認するのは通常の保有水平耐力計算と同様であるが、本マニュアルでは、安全側の配慮として、保有水平耐力の算定時以降も荷重増分解析を継続し、崩壊機構形成後、ある程度の大きさの変形まで、脆性的な破壊が生じないことを確認することを追加の検討として求めることとした。脆性的な破壊が生じないことを確認するための変形に関しては、保有水平耐力計算では地震時の変形量が陽な形では求められないことから、例えば、限界耐力計算における保証設計に準じて、等価線形化法等を援用して大地震時の水平変形量を推定し、少なくともその1.5 倍の水平変形量まで、各部材に脆性的な破壊が生じないように保証設計を行うことなどが考えられる。

なお、本マニュアルでは十分な検討が行えていないことから、図 3.1.48(b)に示すように1 階以外の 全層に CLT 袖壁を設け、1 階柱脚および各階の梁端に塑性ヒンジを計画する Case2 は対象外としてい るが、図 3.1.47 で示した数値解析のように、崩壊機構の形成後は、各部材に作用する応力が頭打ちと なることから、通常の保有水平耐力計算と同様の方法で、保証設計を行うことは可能と考えられる。

また、図 3.1.48(c)に示すように全層に CLT 袖壁を設け、基礎梁および各階の梁端に塑性ヒンジを計 画する Case3 は、本マニュアルの適用対象となるが、 図 3.1.48(b)と同様に、崩壊機構の形成後は、各 部材に作用する応力が頭打ちとなり、崩壊機構形成後に CLT 袖壁や周辺部材に作用する応力の増加を 抑制することができるものと考えられる。一方で、文献[3.1.9]では、基礎部材は断面が大きく、通常の 配筋では上部構造の部材と比べて、曲げ破壊後の十分な変形性能を確保することが難しいこと、また、 基礎部材は地中に設けられるため、地震後の損傷調査や補修には上部構造と比較して多くの期間・費 用を要することから、基礎部材に塑性ヒンジを計画する崩壊形はできるだけ避けることが望ましいも のとされており、Case3の採用には十分な注意が必要である。

B-132

(d)設計上の留意点2(CLT 袖壁の鉛直断面におけるせん断余裕度の確認)

CLT 袖壁に作用する圧縮軸力が大きい場合、鉛直断面には水平断面よりも大きなせん断力が作用す る可能性がある。本検討で載荷実験を行った CLT 袖壁を設置した全ての試験体(部材実験の AS、BS、 AD 試験体、架構実験の A、B 試験体)について、実務での使用を想定した簡易モデル(詳細は 3.1.4 を参照されたい)を用いた数値解析を行ったところ、図 3.1.46(h)で一例を示したように、CLT 袖壁の 鉛直断面に作用するせん断力が設定したせん断耐力を上回る結果が得られている。逆対称載荷を行っ た試験体 AD では、図 3.1.4 で示したように、CLT 袖壁のラミナ間でずれが生じるせん断降伏が確認 されたが、急激な耐力低下は確認されておらず、また、その他の試験体でも、鉛直せん断力が原因と 考えられるような脆性的な破壊は確認されていない。実験時の挙動の推定に用いた詳細モデル(詳細 は 3.1.4 を参照されたい)では、CLT 袖壁を模したブレース材の軸耐力を頭打ちとする復元力特性を 付与することで、実験結果を精度良く評価できることを確認している。一方、上述した簡易モデルで は、詳細モデルとは異なり、CLT 袖壁に作用する鉛直せん断力によるせん断変形を再現することはで きないが、平面保持仮定に基づいた通常のモデル化でも、実験結果を十分な精度で評価できることを 確認している。

本マニュアルでは、上述したように、実験において、鉛直せん断力が原因と考えられるような脆性 的な破壊は確認されていないこと、鉛直断面に作用するせん断力がどの時点でせん断耐力に到達した かを正確に判断することは難しいことなどを踏まえ、簡易モデルを用いた骨組解析では、CLT 袖壁の 鉛直断面に作用するせん断力がせん断耐力を超えた場合でもその時点を崩壊メカニズムの形成点とは 考えず、解析を続行してもよいこととした。一方で、部材種別判定では、後述する式(3.1.44)、(3.1.45) を用いて、CLT 袖壁の鉛直断面におけるせん断力を推定し、所定のせん断余裕度が確保できない場合 には、当該部材について FD もしくは WD の判定を行うこととした。なお、ここで示した手法は、CLT 袖壁の鉛直断面のみに適用するものとし、水平断面に作用するせん断力がせん断耐力に達する場合に は、通常の耐力壁の取り扱いと同じように、せん断破壊が生じた時点で保有水平耐力に達したものと 判断する必要がある。

CLT 袖壁の鉛直断面に作用するせん断力は、CLT 袖壁の上下の仕口面に作用する軸方向力の差分を 累加する等の計算を行えば算定可能であるが、複数の水平位置において計算を行う必要がある等、計 算過程がやや煩雑であるため、ここでは、簡易モデルの解析結果から得られる CLT 袖壁の曲げ圧縮力、 水平接合部に取り付けたアンカーボルトの引張力、鉛直接合部の鉛直せん断力を用いて、CLT 袖壁の 鉛直断面に作用する鉛直せん断力を推定する方法を示す。図 3.1.49 に示す架構試験体を例に挙げると、 CLT の曲げ圧縮力は上下の仕口面に分布して作用するため、CLT 袖壁の鉛直断面に作用する鉛直せん 断力は、CLT 袖壁の水平位置によって変動するが、ここでは略算的に図 3.1.49(a)に示す式(3.1.44)もし くは図 3.1.49(b)に示す式(3.1.45)のいずれかにより、鉛直せん断力を推定することとした。いずれの式 を用いた場合にも、鉛直せん断力は同じ値となる。上下の仕口面に作用する曲げ圧縮力の合計が CLT 袖壁の軸耐力 ($t_w \cdot D_w \cdot t_h F_k$)を上回る場合には、図 3.1.49(c)に示すように、全ての曲げ圧縮力が鉛直 せん断力として断面内に作用しないので、式(3.1.44)、(3.1.45)において、鉛直せん断力を低減している。

(スパン内側の応力を用いて算定する場合)

$$p_{1}Q_{wv1} = \max({}_{1}Q_{v1}, {}_{1}N_{wc1} + {}_{2}T_{1} - {}_{1}T_{1} - \max(0, {}_{1}N_{wc1} + {}_{1}N_{wc3} - t_{w} \cdot D_{w} \cdot {}_{th}F_{k}))$$

$$p_{1}Q_{wv2} = \max({}_{1}Q_{v2}, {}_{1}N_{wc6} + {}_{1}T_{2} - {}_{2}T_{2} - \max(0, {}_{1}N_{wc4} + {}_{1}N_{wc6} - t_{w} \cdot D_{w} \cdot {}_{th}F_{k}))$$

$$p_{2}Q_{wv1} = \max({}_{2}Q_{v1}, {}_{2}N_{wc1} + {}_{3}T_{1} - {}_{2}T_{1} - \max(0, {}_{2}N_{wc1} + {}_{2}N_{wc3} - t_{w} \cdot D_{w} \cdot {}_{th}F_{k}))$$

$$p_{2}Q_{wv2} = \max({}_{2}Q_{v2}, {}_{2}N_{wc6} + {}_{2}T_{2} - {}_{3}T_{2} - \max(0, {}_{2}N_{wc4} + {}_{2}N_{wc6} - t_{w} \cdot D_{w} \cdot {}_{th}F_{k}))$$

(3.1.44)

(3.1.45)

(スパン外側の応力を用いて算定する場合)

$$p_{1}Q_{wv1} = {}_{1}Q_{v1} + \max(0, {}_{1}N_{wc3} - \max(0, {}_{1}N_{wc1} + {}_{1}N_{wc3} - t_{w} \cdot D_{w} \cdot {}_{th}F_{k}))$$

$$p_{1}Q_{wv2} = {}_{1}Q_{v2} + \max(0, {}_{1}N_{wc4} - \max(0, {}_{1}N_{wc4} + {}_{1}N_{wc6} - t_{w} \cdot D_{w} \cdot {}_{th}F_{k}))$$

$$p_{2}Q_{wv1} = {}_{2}Q_{v1} + \max(0, {}_{2}N_{wc3} - \max(0, {}_{2}N_{wc1} + {}_{2}N_{wc3} - t_{w} \cdot D_{w} \cdot {}_{th}F_{k}))$$

$$p_{2}Q_{wv2} = {}_{2}Q_{v2} + \max(0, {}_{2}N_{wc4} - \max(0, {}_{2}N_{wc4} + {}_{2}N_{wc6} - t_{w} \cdot D_{w} \cdot {}_{th}F_{k}))$$

但し、1*N*wc1、1*N*wc3、1*N*wc4、1*N*wc6、: 1FのCLT 袖壁に作用する曲げ圧縮力、2*N*wc1、2*N*wc3、2*N*wc4、2*N*wc6: 2FのCLT 袖壁に作用する曲げ圧縮力、1*T*1、2*T*1、3*T*1、1*T*1、2*T*1、3*T*1: アンカーボルトに作用する引張力、1*Q*v1、1*Q*v2、2*Q*v1、2*Q*v2: RC柱-CLT 袖壁間の鉛直接合部に作用する鉛直せん断力である。

(c) 算定式における鉛直せん断力の低減に関する考え方 図 3.1.49 CLT 袖壁の鉛直断面に作用する鉛直せん断力の最大値の推定

ここで、架構試験体の CLT 袖壁 (3 層 4 プライ、120mm) より、CLT 袖壁の寸法比 (D_w/h_0) を 0.4、 CLT の圧縮の基準強度を用いた座屈強度 (鉛直方向) を 8.1N/mm² と実強度を想定した 16.2N/mm² の 2 通りし、B タイプを想定して、アンカーボルト等による引張力 T_{wb} 、 T_{wt} や鉛直接合材から伝達され る鉛直せん断力 Q_{vv} を無視すると、CLT 袖壁の鉛直断面に作用するせん断応力と CLT 袖壁に作用する 曲げ圧縮力の関係が図 3.1.50 のように求められる。CLT の座屈強度を 8.1N/mm² とした場合の鉛直断 面の最大せん断応力は圧縮耐力に対する曲げ圧縮力の割合が 0.5 の時に最大となり、1.7N/mm²に到達 する。したがって、この場合には、文献[3.1.7]に示されている 3 層 4 プライのせん断の基準強度の範 囲 (1.75N/mm²~2.04N/mm²) に凡そ収まるものと考えられるが、CLT の座屈強度を 16.2N/mm² とした 場合には、鉛直断面の最大せん断応力は 3.3N/mm² と、せん断の基準強度を大きく上回る値となる。

図 3.1.50 架構試験体の CLT 袖壁を対象とした鉛直断面のせん断応力の試算

(e)設計上の留意点3(CLTの材料強度のばらつきの影響)

式(3.1.40)、(3.1.41)、(3.1.42)で示した設計用せん断力の算定に用いられる割増係数 n は、RC 部材に 用いられる一般的な材料の使用を前提としたものであり、袖壁に用いる CLT の材料強度のばらつきに 対応したものではない点に注意が必要であるが、以下の理由から、本マニュアルに基づいて耐震計算 を行う場合には、CLT の材料強度のばらつきの影響は限定的となるものと推測される。

「設計上の留意点1」で示した、CLT 袖壁の設置によって崩壊機構形成後も応力変動が大きい部材 が存在する場合には、CLT の材料強度のばらつき(基準強度と実強度の差)が周辺部材の応力状態に 及ぼす影響は大きいが、当該部材の部材種別をFD もしくはWD とする強度型の設計となるため、基 準強度を用いた評価を行っておけば、保有水平耐力を評価する上では安全側となる。また、CLT 袖壁 の設置後も崩壊機構形成後の応力変動が小さく抑えられる場合には、RC ラーメンを構成する柱、は りのみで架構全体の水平耐力が決定するものと考えられるため、CLT の材料強度のばらつきが周辺部 材の応力状態に及ぼす影響は限定的である。以上の理由より、本マニュアルでは、保証設計において、 CLT の材料強度のばらつきの影響を考慮することを必須とはしないこととした。但し、CLT の実強度 を把握することは、架構内の応力状態を正しく評価する上で重要であるため、必要に応じて何らかの 検討を行うことが望ましい。

基準強度に対する実強度の比率については、例えば、圧縮強度に関しては、5層5プライ、7層7プ ライの CLT パネルについて、圧縮の基準強度の2倍を超える強度が得られることが報告されている ^{[3.1.10]、[3.1.11]}。一方、せん断強度に関しては、3層3プライ、3層4プライ、5層5プライ等の報告結果 ^{[3.1.10]、[3.1.12]、[3.1.13]、[3.1.14]、[3.1.15]}があり、縦継ぎの有無、幅はぎの有無、ラミナの交差面でのずれ変形やせ ん断変形の防止の有無等が関係するが、実大試験体では3.0N/mm²前後の平均せん断強度が得られる 場合が多く、せん断の基準強度との差があまり大きくないことが報告されている。

(f) 設計上の留意点4(全体崩壊形の確認)

図 3.1.43 の構造計算フローで示したように、本マニュアルでは、CLT 袖壁を挿入した RC ラーメン において、全体崩壊形が形成されることを確認することとしているが、この際、RC ラーメンの柱梁接 合部における曲げ耐力比が問題となる。図 3.1.51 に CLT 袖壁によってヒンジリロケーションが生じた RC はりの曲げモーメント分布と塑性ヒンジ位置を示す。地震力の作用により、CLT 袖壁に圧縮スト ラットが形成されることで、CLT 袖壁フェイス位置近傍及び RC 柱フェイス位置の2 か所に塑性ヒン ジが形成されるが、図 3.1.46 で示した数値解析のように、両側の CLT 袖壁が圧縮軸力を負担するた め、RC 柱が負担する圧縮軸力は小さくなる。全体崩壊形を確実に形成するためには、節点位置におけ る柱はり曲げ耐力比をできるだけ大きく設定する必要があるが、RC 柱に作用する軸力が小さくなる とRC 柱の曲げ終局モーメントが低下し、柱はり曲げ耐力比も小さくなる。したがって、通常のRC ラ ーメンに特段の配慮を行わずに CLT 袖壁を挿入した場合、層崩壊形が形成される恐れがあるため、十 分な注意が必要である。対策としては、RC 柱の断面寸法や主筋量を増やすこと、部材試験体 BS で用 いたテンションロッドを CLT 袖壁端に設置する等して、RC 柱に作用する変動軸力を抑制することな どが考えられる。

図 3.1.51 CLT 袖壁によるヒンジリロケーション効果の概要 (左側から地震力が作用する場合、●は塑性ヒンジ位置を示す)

3.1.9 保有水平耐力計算を行う場合の考え方5 (保証設計の具体的な方法)

図 3.1.52、図 3.1.53 に、架構試験体 A、B を対象に行った骨組解析における崩壊形形成時(*R*=1/50rad) のせん断力、曲げモーメント分布を示す。ここでは、簡易モデル、詳細モデルの両方の結果を比較す る形で示している。例えば、RC はりのせん断力、曲げモーメント分布を見ると、詳細モデルでは CLT 袖壁内でせん断力が分散して作用するため、ほぼ均一な曲げモーメントを受けているのに対し、簡易 モデルでは CLT 袖壁内の一つの節点を介して、軸力、せん断力、曲げモーメントの伝達が行われるた め、詳細モデルとは曲げモーメントが異なっており、モデル化を行う上での配慮が必要となる(3.1.4 参照)。

ここでは、RC 造における保証設計の方法を準用し、RC 柱、RC はり、CLT 袖壁(RC 耐力壁に準じた扱いとする場合も含む)、RC はり(基礎はり) -CLT 袖壁間の水平接合部、RC 柱-CLT 袖壁間の 鉛直接合部に関する保証設計の方法を具体的に示す。

図 3.1.52 架構試験体のせん断力、曲げモーメント分布の一例(Aモデル)

図 3.1.53 架構試験体のせん断力、曲げモーメント分布の一例(Bモデル)

(a) RC 柱

CLT 袖壁に隣接する RC 柱に作用する水平せん断力は、図 3.1.52、図 3.1.53 に示すように、脚部(図 中の $_1Q_{c1}$ 、 $_2Q_{c1}$)、中央(図中の $_1Q_{c2}$ 、 $_2Q_{c2}$)、頂部(図中の $_1Q_{c3}$ 、 $_2Q_{c3}$)の3箇所に分類して考える。 骨組解析では、A、B タイプのいずれについても、CLT 袖壁に作用する水平せん断力の伝達を RC は りや RC 基礎はりに直接行うものと仮定しているため、RC 柱に作用するこれらの水平せん断力は同 じ値となるが、A タイプでは CLT 袖壁に作用する水平せん断力を摩擦力のみでは伝達しきれないた め、水平せん断力の一部を鉛直接合部を介して RC 柱に伝達するものと考えている。また、B タイプ では CLT 袖壁に作用する水平せん断力を摩擦力のみで伝達できるものと考えているが、3.1.3 で示し たように、大変形時(二次設計)には CLT 袖壁に接する RC はりの変形が大きくなること、これに伴 い、水平目地に充填した無収縮モルタルの剥落が生じる恐れがあること等を踏まえ、鉛直目地部に充 填したモルタルを介して、RC 柱の側面に CLT 袖壁のせん断力が直接伝達される場合も想定される。

したがって、本マニュアルでは、A、B タイプのいずれについても、RC 柱の中心高さに作用する水 平せん断力 $_1Q_{c2}$ 、 $_2Q_{c2}$ から求められる設計用せん断力に対して、通常の RC 柱部材と同じように、式 (3.1.4)に基づいて RC 柱のせん断耐力^[3.1.4]を算定し、設計用せん断力を上回ることを確認すると共に、 安全側の仮定になるが、式(3.1.46)に基づいて RC 柱の脚部及び頂部に作用する可能性がある水平せん 断力 $_1Q_{c1}$ 、 $_2Q_{c1}$ 、 $_1Q_{c3}$ 、 $_2Q_{c3}$ を算定し、これらを割り増した設計用せん断力に対して、保証設計を行う こととした。なお、検討に用いる耐力式としては、式(3.1.4)に基づいて RC 柱の世ん断耐力を算定して もよいが、CLT 袖壁から伝達される水平せん断力の作用位置は、RC 柱の脚部や頂部に近く、せん断 スパン比が非常に小さい状況にあるものと想定されるため、文献[3.1.6]に記載されている式(3.1.47)の パンチングシア耐力式を用いてせん断耐力を算定し、設計用せん断力を上回ることを確認してもよい こととした。ここで、式(3.1.47)に関しては、設計用せん断力の割り増しを行うこと、水平せん断力 $_1Q_{c1}$ 、 $_2Q_{c1}$ 、 $_1Q_{c3}$ 、 $_2Q_{c3}$ の算定において、利便性に配慮して、摩擦力によって RC はりや RC 基礎はりに直接 伝達される水平せん断力を無視している(せん断力を大きく見積もっていること)こと、式(3.1.4)がせ ん断耐力を平均的に評価する式であることを踏まえ、本文に記載された式(3.1.48)の下限式 K_{min} ではな く、付録に記載された式(3.1.49)の平均式 K_{av} を用いてもよいこととした。

$${}_{1}Q_{c1} = {}_{1}Q_{c3} = {}_{1}Q_{c2} + {}_{1}Q_{w2}$$
$${}_{2}Q_{c1} = {}_{2}Q_{c3} = {}_{2}Q_{c2} + {}_{2}Q_{w2}$$

(3.1.46)

ここで、1*Q*_{c1}、1*Q*_{c3}、2*Q*_{c1}、2*Q*_{c3}:図 3.1.52、図 3.1.53 に示す 1、2 階の RC 柱の脚部及び頂部に作用 するせん断力、1*Q*_{c2}、2*Q*_{c2}:図 3.1.52、図 3.1.53 に示す 1、2 階の RC 柱の中心高さに作用するせん断 力、1*Q*_{w2}、2*Q*_{w2}: RC 柱に隣接する 1、2 階の CLT 袖壁に作用する水平せん断力とする。

$${}_{c}Q_{pu} = K_{av} \cdot {}_{c}\tau_{0} \cdot {}_{c}b_{e} \cdot D_{c}$$

$$(3.1.47)$$

$$K_{\min} = 0.34 / (0.52 + a_c / D_c)$$

$$K_{av} = 0.58 / (0.76 + a_c / D_c)$$

$$c\tau_{0} = 0.98 + 0.1_{c}F_{c} + 0.85\sigma_{c} \qquad (0 \le \sigma_{c} \le 0.33_{c}F_{c} - 2.75 \text{ (DF)})$$

$$c\tau_{0} = 0.22_{c}F_{c} + 0.49\min(0.66_{c}F_{c},\sigma_{c}) \qquad (0.33_{c}F_{c} - 2.75 < \sigma_{c} \text{ (DF)})$$

$$(3.1.49)$$

(3.1.50)

(3.1.48)

ここで、。Qpu: RC 柱のパンチングシア耐力、。be: パンチングを受ける RC 柱の直交材を考慮した有

効幅で RC 柱の幅としてよい (mm) 、 D_c : パンチングを受ける RC 柱のせい (mm) 、 a_c : CLT 袖壁 から RC 柱に伝達される水平せん断力が集中的に作用すると仮定した場合の作用点から水平断面まで の距離で $a_d/D_c = 1/3$ としてよい、 $_cF_c$: コンクリートの圧縮強度 (N/mm²) 、 σ_c : $p_{gc}\sigma_{y+c}\sigma_{0}$ 、 $_cp_{g}$: $_cb_c D_c$ に対する RC 柱の全主筋断面積の比、 $_c\sigma_y$: RC 柱主筋の降伏強度 (N/mm²) 、 $_c\sigma_0$: $N_d(_cb_cD_c)$ 、 N_c : メカ ニズム時における RC 柱軸方向力で圧縮を正とする (N) である。

(b) RC はり

図 3.1.52、図 3.1.53 に示すように、RC はりに作用するせん断力は、RC 柱フェイス位置や CLT 袖壁 内、スパン中央で異なる値を取るため、それぞれのせん断力に対して、設計用せん断力を算定し、保 証設計を行う必要がある。2 階はりを例に挙げると、詳細モデルでは、はり端の2箇所 ($_2Q_{b1}$ 、 $_2Q_{b2}$)、 スパン中央の1箇所 ($_2Q_{b3}$)に対して、設計用せん断力を算定する必要があり、1 スパンでは計5箇所 の保証設計を行う必要がある。簡易モデルでは、CLT 袖壁を1本の線材としてモデル化を行っている ため、CLT 袖壁のフェイス位置近傍に作用するせん断力を解析結果から直接得ることができない。そ こで、簡易モデルでは、図 3.1.54 に示すように、CLT 袖壁端に全ての曲げ圧縮力が作用するものと仮 定して、以下の算定式によって、必要なせん断力を計算することとした。

 ${}_{2}Q_{b2} = {}_{2}N_{w1} + {}_{1}T_{1} - {}_{2}Q_{b3}$ ${}_{2}Q_{b4} = {}_{1}N_{w2} + {}_{2}T_{2} - {}_{2}Q_{b4}$ ${}_{3}Q_{b2} = {}_{2}T_{1} - {}_{3}Q_{b3}$ ${}_{3}Q_{b4} = {}_{2}N_{w2} - {}_{2}Q_{b3}$

(3.1.51)

ここで、 $2Q_{b2}$ 、 $3Q_{b2}$:加力方向に対して引張側の RC 柱に取り付く CLT 袖壁のフェイス位置近傍に おける 2、3 階の RC はりのせん断力、 $2Q_{b4}$ 、 $3Q_{b4}$:加力方向に対して圧縮側の RC 柱に取り付く CLT 袖壁のフェイス位置近傍における 2、3 階の RC はりのせん断力、 $2Q_{b3}$ 、 $3Q_{b3}$:スパン中央に作用する 2、3 階の RC はりのせん断力、 $_2N_{w1}$:加力方向に対して引張側の RC 柱に取り付く CLT 袖壁の 1 階脚 部に作用する圧縮軸力、 $_1N_{w2}$ 、 $_2N_{w2}$:加力方向に対して圧縮側の RC 柱に取り付く CLT 袖壁の 1、2 階 頂部に作用する圧縮軸力、 $_1T_1$ 、 $_2T_1$:加力方向に対して引張側の RC 柱に取り付く CLT 袖壁の 1、2 階 頂部に取り付くアンカーボルトの引張力、 $_2T_2$:加力方向に対して圧縮側の RC 柱に取り付く CLT 袖壁の 1、2 階

図 3.1.54 CLT 袖壁のフェイス位置近傍のせん断力の推定(試験体 A の場合)

CLT 袖壁のフェイス位置近傍に作用するせん断力 $2Q_{62}$ およびスパン中央に作用するせん断力 $1Q_{63}$ から求められる設計用せん断力に対しては、通常の RC はり部材と同じように、式(3.1.14)に基づいて RC はりのせん断耐力^[3.1.4]を算定し、設計用せん断力を上回ることを確認すればよい。部材端に作用する せん断力 $2Q_{61}$ から求められる設計用せん断力に対しても同様に、式(3.1.14)に基づいて RC はりのせん 断耐力を算定してもよいが、鉛直せん断力が作用する位置ではせん断スパン比が非常に小さい状況に あるため、RC 柱と同じように、文献[3.1.6]に記載されている式(3.1.15)のパンチングシア耐力式を用い てせん断耐力を算定し、設計用せん断力を上回ることを確認してもよい。ここで、式(3.1.15)に関して は、設計用せん断力の割り増しを行うこと、式(3.1.14)がせん断耐力を平均的に評価する式であること を踏まえ、本文に記載された式(3.1.16)の下限式 K_{min} ではなく、付録に記載された式(3.1.17)の平均式 K_{av} を用いてもよいこととした。なお、RC はり端に作用するせん断力は、RC 柱フェイス位置近傍に おいて下階の CLT 袖壁端から伝達されるせん断力とスパン中央の方から RC はりを介して伝達される せん断力を足し合わせたものであり、本来であればこれらを区別して取り扱うべきであるが、本マニュアルでは、骨組解析の結果や利便性も踏まえ、RC 柱フェイス位置のせん断力 $2Q_{b1}$ を用いて安全性の確認を行ってよいものとした。

RC はりでは、CLT 袖壁フェイス位置近傍に塑性ヒンジが形成されることになるため、 CLT 袖壁間 をクリアスパンとした付着割裂破壊防止のための検討を別途行う必要がある。また、RC はりの塑性 ヒンジは、RC 柱フェイス位置にも形成される場合があるため、RC はりの主筋を通し配筋とする場合 の定着長さは、CLT 袖壁内は考慮せず、RC 柱はり接合部内のみで確保する必要がある。

(c) CLT 袖壁

CLT 袖壁に関しては、文献[3.1.7]に記載された令第 82 条の 3 第二号における CLT 建築物における ルート 3 の構造計算における終局時の検討(3.1.8 で示した式(3.1.37)~式(3.1.39)による検定)を参考 に、これと同等以上の検討を行うこととする。

(曲げ、圧縮応力に関する検討)

本マニュアルでは、3.1.4 で示したモデルを用いて構造計算を行うことを想定しており、CLT 袖壁に 関しては、上下端の水平接合部に、簡易モデルでは MS モデルやファイバー要素を、詳細モデルでは 軸ばねを設けることを前提としているため、終局時における軸力と曲げの相関関係は自動的に満足さ れる。但し、通常の CLT パネルでは軸力比 0.2 未満が対象となっているのに対し、本マニュアルでは、 これを大きく上回る圧縮軸力が作用する状態を対象とするため、MS モデルやファイバーモデルの復 元力特性には CLT の圧縮の基準強度の代わりに細長比を考慮した座屈強度を用いることを原則とす る。

(水平方向のせん断応力に関する検討)

文献[3.1.7]では、CLT パネルに作用するせん断応力がせん断の基準強度を下回ることを検討するが、 本マニュアルでは、式(3.1.41)に示す RC 柱を対象とした算定式に基づき、設計用せん断力の算定を行 うこととした。ここで、CLT 袖壁に関しては、袖壁に作用する圧縮軸力の大きさによって、せん断力 の大きさが異なること、また、水平接合部にアンカーボルト等の金物を設置していない場合には、曲 げ降伏の判定が難しいことから、安全側の配慮として、部材の両端に塑性ヒンジが発生しない場合に 用いられる割増係数 n として 1.25 を用いることとした。

B-142

(鉛直方向のせん断応力に関する検討)

3.1.8 で示したように、CLT 袖壁を1階に設けるケースや、RC 柱-CLT 袖壁間の鉛直接合部を比較 的剛強に設計する場合には、CLT 袖壁の鉛直断面に作用するせん断力が大きくなり、せん断耐力に到 達する可能性がある。そこで、本マニュアルでは、簡易モデルを用いる場合、図 3.1.49(a)に示す式(3.1.44) もしくは図 3.1.49(b)に示す式(3.1.45)のいずれかにより、CLT 袖壁の鉛直断面に作用する鉛直せん断力 を推定し、式(3.1.41)に示す RC 柱を対象とした算定式に基づいて、割増係数 n (1.25) を乗じた値を設 計用せん断力とすることとした。

(鉛直断面のせん断耐力)

 $_{wv}Q_{su} = t_{w}h_{0t}F_{sI}$

(3.1.52)

ここで、 t_w : CLT 袖壁の厚さ、 h_0 : CLT 袖壁の内法高さ、 F_{sl} : CLT の面内せん断の基準強度である。

なお、詳細モデルでは、図 3.1.39 で示したように、CLT 袖壁のブレース要素が軸耐力に到達し、一 定の耐力を保持することで、CLT 袖壁の鉛直断面に作用するせん断力が、せん断耐力で頭打ちとなる 挙動を再現することができるが、簡易モデルでは、CLT 袖壁を 1 本の線材としてモデル化しており、 CLT 袖壁の鉛直断面に作用する鉛直せん断力の制限を行っていないため、式(3.1.44)や式(3.1.45)によっ て算定される鉛直せん断力の最大値がせん断耐力を上回ることがあり得る。このような場合には、CLT 袖壁の保証設計を満足できないものと考え、袖壁付き柱として取り扱う場合でも、部材種別は FD と 見なすこととする。但し、数値解析の結果から、CLT 袖壁に作用する鉛直せん断力がせん断耐力を上 回ったものと推測される部材試験体 AS、BS、AD、架構試験体 A、B のいずれについても、鉛直せん 断力に起因するような破壊モードは確認されておらず、靱性に富む挙動を示したことから、CLT 袖壁 の鉛直断面に作用する鉛直せん断力がせん断耐力に到達した場合でも、その時点を崩壊メカニズムの 形成点とは考えずに、解析を続行してもよいものとする。

(d) RC はり(基礎はり) - CLT 袖壁間の水平接合部(A タイプ)

RC ラーメンと CLT 袖壁の接合方法として、3.1.3 で示した A タイプを採用した場合の水平接合部の 設計手法を以下に示す。

(水平せん断力に対する検討)

A タイプでは、CLT 袖壁のフェイス位置近傍に RC はりの塑性ヒンジを形成するためのアンカーボ ルトを設置することとしている。アンカーボルトが引張力を負担することで、CLT 袖壁に作用する曲 げ圧縮力が増大し、仕口面における摩擦耐力が増大する効果はあるが、曲げ終局モーメントの増大に 伴い、CLT 袖壁に作用する水平せん断力も増大すること、また、鉛直接合部を設けることにより、CLT 袖壁の仕口面に作用する圧縮軸力が低減される場合もあることから、式(3.1.2)で示した CLT 袖壁の形 状のみでは必要な摩擦耐力を確保する方法が適用できない。そこで、後述の鉛直接合部の保証設計で は、鉛直接合部を介した水平せん断力の伝達が可能かどうかを確認することとしている。

(鉛直せん断力に対する検討)

Aタイプでは、全てのRCはりの塑性ヒンジの形成位置をRC柱フェイスからCLT 袖壁端に移動さ

せることを目標としている。RC はりの最大曲げモーメント点を CLT 袖壁端とするためには、CLT 袖 壁端において、RC はりのスパン中央に作用する鉛直せん断力よりも大きな力を RC はりに伝達する 必要があり、CLT 袖壁端の支圧力と CLT 袖壁端に設置するアンカーボルトの引張力を想定している。

簡易モデルでは、RC はりの塑性ヒンジ位置を 3.1.4 で示した式(3.1.6)によって決めるため、CLT 袖壁に十分な支圧強度が確保できなければ、RC はりの塑性ヒンジ位置が CLT 袖壁の内部に入り込み、 十分な補強効果が得られなくなることになる。なお、式(3.1.6)による CLT 袖壁端から危険断面位置ま での距離 L_b が CLT 袖壁せいの半分を超えると、モデル化を行う上での不整合が出てくるため、これ が実質的な上限となる。

一方、アンカーボルトに関しては、CLT 袖壁の脚部や頂部に設ける水平接合部の支圧特性を反映し たファイバーモデルもしくは MS モデル中の1本の線材としてモデル化されるため、詳細モデルのよ うに、アンカーボルトから伝達される引張力によって、RC はりの曲げモーメント分布の勾配が変化 し、最大モーメント点が CLT 袖壁端に移動するかどうかを一見では確認できない。そこで、式(3.1.53) によるアンカーボルトの降伏耐力が、式(3.1.54)による設計用せん断力を上回ることに加え、アンカー ボルトが確実に引張降伏し、接合部として脆性的な破壊が生じないことを確認するために、文献[3.1.7] にしたがって、式(3.1.55)を満足することを確認することとした。特にアンカーボルトを1 階脚部に設 置する場合には、アンカーボルトの伸びが増大し、ひずみ硬化により、ドリフトピンや CLT 接合部に 作用する引張力が増大する可能性があるため、注意が必要である。

$$_{hva}\mathcal{Q}_{y} = {}_{h}n_{a} \cdot {}_{a}a_{s} \cdot {}_{a}\sigma_{y}$$

$$(3.1.53)$$

 $_{hv}Q_D = {}_bQ_{M0}$

用いた)である。

(3.1.54)

ここで、hvaQy:水平接合部におけるアンカーボルトの降伏耐力、hna:水平接合部におけるアンカーボルトの本数、aas:アンカーボルトの軸部の断面積、aoy:アンカーボルトの降伏強度、bQMO:Ds時に RC はりのスパン中央に作用するせん断力である。

$$hvtQ_u = \min(hvdQ_y, hvsQ_u, hvwQ_y, hvfQ_y) \ge hvaQ_u (= hn_a \cdot ap_{ub})$$

(3.1.55)

(3.1.58)

ここで、 $hvtQ_u: 水平接合部におけるアンカーボルト周辺部位の耐力、<math>hvdQ_u: 水平接合部におけるド$ リフトピンの降伏耐力、 $hvsQ_u: 水平接合部における CLT 接合部の集合型破壊時の終局耐力、<math>hvwQ_y: 水$ 平接合部におけるウェブの降伏耐力、 $hvtQ_u: 水平接合部におけるフランジ (底板) の曲げ耐力時引張$ $力、<math>hvaQ_u: 水平接合部におけるアンカーボルトの終局耐力、{hna: 水平接合部におけるアンカーボルト}$ の本数、<math>apub: アンカーボルトの判定用終局耐力 (文献[3.1.7]の表 10.6.2-1 参照) である。

$$hvaQ_y = {}_h n_d \cdot {}_{dv} p_y$$
 (3.1.56)
ここで、 ${}_h n_d : 水平接合部におけるドリフトピンの本数、{}_{dv} p_y : ドリフトピン1本あたりの鉛直方向の降伏強度(ここでは、アンカーボルトに変形を集中させるため、ドリフトピンに関しては降伏強度を$

 $hvsQ_u = 2 \cdot Min(P_{R1}, P_{R2})$ (3.1.57)

$$P_{R1} = P_{t1} + P_{g1}$$

$$P_{t1} = (W_L - m_d \cdot d_d) \cdot t_l \cdot F_t$$

$$P_{g1} = W_L \cdot L_d \cdot F_{ge}$$

$$P_{R2} = P_{t2} + P_{g2} + P_s$$

$$P_{t2} = (W_b - (m_d - 1) \cdot d) \cdot t_l \cdot I_l F_t$$

$$P_{g2} = W_b \cdot L_d \cdot {}_t F_{ge}$$

$$P_s = 2 \cdot (L_d - (sn_d - \frac{1}{2}) \cdot d) \cdot t_l \cdot F_s$$

(3.1.64)

(3.1.59)

(3.1.60)

(3.1.61)

(3.1.62)

(3.1.63)

ここで、 P_{R1} :幅はぎ接着していない CLT パネルのラミナ境界部分が影響する壊れ方の場合の最大耐力、 P_{R2} :幅はぎ接着していない CLT パネルのラミナ境界部分が影響しない壊れ方の場合の最大耐力、 W_L :ドリフトピン接合に掛かるラミナ幅の合計、 F_t :ラミナの引張強度(=12N/mm²)、 F_g :CLTの接着積層面のせん断強度(=1.15N/mm²)、 m_d :最上段の列のドリフトピンの本数、d:ドリフトピン の直径、h:最外層ラミナの厚み、 L_d :CLT 木口面から最上段ドリフトピン位置までの長さ、 W_d :ドリフトピンの右端から左端までの距離、 F_s :ラミナのせん断強度(=1.8N/mm²)、 n_d :加力方向のドリフトピンの本数である。

$$_{hvw}Q_y = {}_ht_w({}_hL_w - \sum d_h)_h\sigma_{wy}$$

(3.1.65) ここで、hfw:水平接合材のウェブの厚さ、hLw:水平接合材のウェブの長さ、dh:鋼材に設けた孔(ウ ェブに設けたドリフトピン設置用の孔)の直径、hσwv:水平接合材のウェブの降伏強度である。

$$_{hvf}Q_{u} = \frac{2 \cdot \frac{1}{4} {}_{h}L_{f} \cdot {}_{h}t_{f}^{2} \cdot {}_{h}\sigma_{fy}}{{}_{h}L_{h}}$$

(3.1.66)

ここで、hLf:水平接合材のフランジの長さ、hff:水平接合材のフランジの厚さ、hoff:水平接合材のフランジの降伏強度、hLh:水平接合材のフランジに設けたアンカーボルトの重心位置からウェブ端部までの長さである。なお、本式には、フランジの全塑性モーメントを用いているが、アンカーボルトに変形を集中させる観点では、フランジの曲げ降伏モーメントを用いる(1.5 で除した値を用いる)ことが望ましい。

なお、詳細モデルを用いる場合には、CLT 袖壁の断面を四分割し、支圧特性を反映した軸ばねをそ れぞれの断面の図心に設置する。RC はりの塑性ヒンジは、式(3.1.6)によって求められる CLT 袖壁フ ェイス位置から曲げばねまでの距離 L_bを参考に、CLT 袖壁フェイス位置から内側に袖壁せいの 1/8 倍、 3/8 倍、5/8 倍、7/8 倍のいずれか(以降、この長さを L_b'と称する)だけ入り込んだ位置に設けるため、 袖壁せいの 7/8 倍が L_b'の実質的な上限となる。

また、アンカーボルトに関しては、詳細モデルでは1本の線材としてモデル化しており、RC はり のスパン中央に作用するせん断力に対して、アンカーボルトの耐力が不足する場合には、CLT 袖壁端 の曲げモーメントが最大とならず、RC 柱フェイス位置に塑性ヒンジが形成されるため、その影響が 自動的に反映される。そのため、簡易モデルの場合に検討した接合部として脆性的な破壊が生じない ことを確認するための式(3.1.55)による検討のみを行うこととした。 (e) RC はり(基礎はり) - CLT 袖壁間の水平接合部(B タイプ)

RC ラーメンと CLT 袖壁の接合方法として、3.1.3 で示した B タイプを採用した場合の水平接合部の 設計手法を以下に示す。

(水平せん断力に対する検討)

Bタイプでは、小変形時(一次設計)には CLT 袖壁の上下の仕口面に生じる摩擦力によるせん断伝 達を、大変形時(二次設計)には滑り止めを介した支圧力によるせん断伝達を行うことを想定してい る。このうち、前者に関しては、3.1.3の式(3.1.2)で示した CLT 袖壁の形状に関する条件($D_w/h_0 \leq 0.4$ 、 D_w :全せい、 h_0 :内法高さ)を満足すればよいが、ここではその根拠となった摩擦係数に関する既往 の知見について述べる。

摩擦係数 µ に関しては、文献[3.1.7]では壁パネルに期待できる摩擦係数として 0.3 が、また、文献 [3.1.16]では、プレキャスト部材の間にモルタルを充填し、圧着接合する場合の摩擦係数として 0.5 が 与えられている。前者に関しては、地震上下動の影響も踏まえた振動台実験結果等に基づく安全側の 判断による値、後者に関しては、実験の下限値を地震時の繰り返し荷重の影響を考慮して低減した値 とされている。CLT 袖壁-RC はり、RC 基礎はり間に関しては、目地部分に無収縮モルタルやエポキ シ樹脂を充填する点においては、後者に近い接合状況となっているものと考えられることから、本マ ニュアルでは、摩擦係数 µ として 0.5 を採用する。一方で、文献[3.1.16]では、地震時の繰り返しによ るせん断力の増減は考慮しているものの、圧着面に作用する軸力の増減は考慮されておらず、その点 では危険側の評価となること等を踏まえ、設計用せん断力を 1.25 倍することとした。これにより、設 計に用いる実質的な摩擦係数は 0.5/1.25=0.4 となる。

滑り止めのせん断設計に関しては、式(3.1.67)で求められる設計用せん断力を、式(3.1.68)で求められる滑り止めの水平せん断耐力が上回ることを確認することとした。式(3.1.67)に関して、割増係数nは RC柱の塑性ヒンジが形成されない場合の割増係数に準じて1.25とした。

式(3.1.68)に示す滑り止めの水平せん断耐力のうち、CLTの木口面の支圧耐力は式(3.1.69)で、ウェブ のせん断降伏耐力は式(3.1.70)で、曲げ降伏時せん断力は式(3.1.71)で、寸切りボルトのせん断耐力は式 (3.1.72)で、底面における寸切りボルトの引張降伏時せん断力は式(3.1.73)で、支圧板(フランジ)の曲 げ耐力時せん断力は式(3.1.74)で、滑り止め底板の曲げ耐力時せん断力は式(3.1.75)によって求める。な お、式(3.1.72)は、文献[3.1.6]のあと施工アンカー(金属系、定着長がアンカー径の7倍以上)のせん 断耐力式を用いて算定している。また、式(3.1.74)、式(3.1.75)では、滑り止めのウェブが中央に1箇所 設置されている場合を想定し、崩壊線理論に基づいて、図 3.1.55 に示す破壊線を想定しており、式 (3.1.74)では文献[3.1.17]における等分布荷重を受ける外壁の限界土圧の計算式を、式(3.1.75)では文献 [3.1.18]における集中荷重を受ける2辺固定支持2辺自由長方形板の事例を参考に、式(3.1.77)では文献 [3.1.18]における集中荷重を想定し、崩壊線理論に基づいて、図 3.1.56 に示す破壊線を 想定しており、式(3.1.76)では式(3.1.74)と同様に等分布荷重を受ける外壁の限界土圧の計算式を、式 (3.1.77)では文献[3.1.18]における集中荷重を受ける3辺固定支持1辺自由長方形板の事例を参考に計 算している。

$$_{hh}Q_D = n \cdot {}_wQ_{M0}$$

(3.1.67)

B.構造分野

$${}_{hh}Q_u = \min({}_{hhb}Q_u, {}_{hhw}Q_y, {}_{hhf}Q_y, {}_{hhs}Q_u, {}_{hht}Q_u, {}_{hhl}Q_{u1}or {}_{hhl}Q_{u2}, {}_{hhp}Q_{u1}or {}_{hhp}Q_{u2})$$

(3.1.68)

(3.1.73)

ここで、 hhQ_D :水平接合部の設計用水平せん断力、 $_wQ_{M0}$: Ds 時に CLT 袖壁に作用する水平せん断力、n:保証設計のための割り増し係数、 hhQ_u :滑り止めの水平せん断耐力、 $hhbQ_u$:滑り止めにおける CLT の木口面の支圧耐力、 $hhwQ_y$:滑り止めにおけるウェブのせん断降伏耐力、 $hhdQ_y$:滑り止めにおける つまげ降伏時せん断力、 $hhwQ_y$:滑り止めにおける寸切りボルトのせん断耐力、 $hhdQ_u$:滑り止め底面に おける寸切りボルトの引張降伏時せん断力、 $hhlQ_{u1}$ 、 $hhlQ_{u2}$:滑り止めの支圧板(フランジ)における崩壊線理論による曲げ耐力時せん断力、 $hhpQ_{u1}$ 、 $hhpQ_{u2}$:滑り止め底板における崩壊線理論による曲げ耐力

$${}_{hhb}Q_u = t_w \cdot h_s \cdot {}_{th}F_k \tag{3.1.69}$$

$$_{hhw}Q_y = {}_st_w \cdot D_s \cdot \frac{{}_s\sigma_{wy}}{\sqrt{3}}$$
(3.1.70)

$$_{hhf}Q_{y} = \frac{Z_{s} \cdot {}_{s}\sigma_{fy}}{0.5h_{s}}$$

$${}_{hhs}Q_u = \operatorname{Min}(0.7_t \sigma_y, 0.4 \sqrt{{}_c E_c \cdot {}_c F_c}) \cdot \sum_t a_t$$

$$(3.1.71)$$

$$(3.1.72)$$

$${}_{hht}Q_u = \frac{0.9\sum_t a_t \cdot {}_t \sigma_y \cdot d_s}{0.5h_s}$$

$${}_{hhl}Q_{u1} = \frac{(4\frac{h_{s}'}{b_{s1}'} + 2 + 2) \cdot {}_{l}M_{0}}{(\frac{h_{s}'}{2} - \frac{1}{12}b_{s1}')b_{s1}'} \cdot h_{s} \cdot b_{s}$$

$$({}_{l}M_{0} = \frac{1}{4}({}_{s}t_{f})^{2}{}_{s}\sigma_{fy}, \text{ また, 上式を用いる場合には, } h_{s}' \ge 0.5b_{s1}' \text{ となることを確認する})$$

$$(3.1.74)$$

$${}_{hhp}Q_{u1} = \frac{0.9a_s}{0.5h_s} \cdot 2_p M_0 \cdot \min(4\pi, \frac{4(D_s - {}_{s}t_f)}{0.5b'_{s1}} + \frac{4(0.5b_{s1})}{D_s - {}_{s}t_f})$$

$$(\{\underline{H} \ \cup, \ {}_{p}M_0 = \frac{1}{4}({}_{s}t_p)^2 {}_{s}\sigma_{py}\})$$

$$(3.1.75)$$

$${}_{hhl}Q_{u2} = \frac{(4\frac{h_s'}{b_{s2}'} + 2 + 4\frac{h_s' - 0.5b_{s2}'}{b_{s2}'} + 2) \cdot {}_{l}M_0}{(\frac{h_s'}{2} - \frac{1}{12}b_{s2}')b_{s2}'} \cdot h_s \cdot b_s}{(\frac{h_s'}{2} - \frac{1}{12}b_{s2}')b_{s2}'}$$

$$({}_{l}M_0 = \frac{1}{4}({}_{s}t_f)^2 {}_{s}\sigma_{fy}, \pm t_{\sim}, \pm t_{\sim} $

(但し、 $_{p}M_{0} = \frac{1}{4} (_{s}t_{p})^{2} {}_{s}\sigma_{py}$) ここで、 t_{w} : CLT 袖壁の壁厚、 h_{s} : 滑り止めの高さ、 $_{th}F_{k}$: CLT の圧縮の基準強度を用いた座屈強度

B.構造分野

(水平方向)、 s_{tw} : 滑り止めのウェブの厚さ、 D_s : 滑り止めの全せい、 $s_{\sigma wy}$: 滑り止めのウェブの降伏 強度、 $s_{\sigma fy}$: 滑り止めのフランジの降伏強度、 Z_s : 滑り止めの断面係数、 σ_y : 寸切りボルトの降伏強度、 cE_c : コンクリートのヤング係数(N/mm²)、 cF_c : コンクリートの圧縮強度(N/mm²)、 a_t : 寸切りボ ルトの断面積、 d_s : 寸切りボルトの重心位置から滑り止め端部までの距離、 s_f : 滑り止めの支圧板(フ ランジ)の厚さ、 $s_{\sigma fy}$: 滑り止めの支圧板(フランジ)の厚さ、 b_s : 滑り止めの支圧板(フランジ)の 幅、 h'_s : 滑り止めの高さから底板の厚さを差し引いた値、 b'_{s1} : 滑り止めの支圧板(フランジ)の幅か らウェブの厚さを差し引いた値(ウェブが中央にある場合)、 s_{tp} : 滑り止めの底板の厚さ、 $s_{\sigma py}$: 滑り 此めの底板の降伏強度、 s_{bp} : 滑り止めの底板の幅、 b'_{s2} : 滑り止めのウェブ間の内法長さ(ウェブが両 側にある場合)とする。

(鉛直せん断力に対する検討)

B タイプでは、CLT 袖壁端からの支圧力の伝達が期待できる箇所では、RC はりの塑性ヒンジの形 成位置を RC 柱フェイスから CLT 袖壁端に移動させることを目標としている。RC はりの最大曲げモ ーメント点を CLT 袖壁端とするためには、CLT 袖壁端において、RC はりのスパン中央に作用する鉛 直せん断力よりも大きな力を RC はりに伝達する必要がある。以下に、簡易モデルを用いる場合の保 証設計の方法を示す。A タイプと同様に、簡易モデルでは、RC はりの塑性ヒンジ位置を 3.1.4 で示し た式(3.1.6)によって決めるため、CLT 袖壁に十分な支圧強度が確保できなければ、RC はりの塑性ヒン ジ位置が CLT 袖壁の内部に入り込み、十分な補強効果が得られなくなることになる。なお、式(3.1.6) による CLT 袖壁端から危険断面位置までの距離 *L*b が CLT 袖壁せいの半分を超えると、モデル化を行 う上での不整合が出てくるため、これが実質的な上限となる。

また、詳細モデルを用いる場合についても、A タイプと同様に、CLT 袖壁の断面を四分割し、支圧 特性を反映した軸ばねをそれぞれの断面の図心に設置することになるが、RC はりの塑性ヒンジは、 式(3.1.6)によって求められる CLT 袖壁フェイス位置から曲げばねまでの距離 L_b を参考に、CLT 袖壁フェイス位置から内側に袖壁せいの 1/8 倍、3/8 倍、5/8 倍、7/8 倍のいずれか(以降、この長さを L_b'と称する)だけ入り込んだ位置に設けるため、袖壁せいの 7/8 倍が L_b'の実質的な上限となる。

(f) RC 柱-CLT 袖壁間の鉛直接合部(A タイプ)

RC ラーメンと CLT 袖壁の接合方法として、3.1.3 で示した A タイプを採用した場合の鉛直接合部の 設計手法を以下に示す。ここでは、簡略化のため、RC 柱内における寸切りボルトの引き抜けや鉛直接 合材自体の破壊は生じず、RC 柱-鉛直接合材間の寸切りボルト、鉛直接合材-CLT 袖壁間のドリフ トピン、CLT 袖壁のドリフトピン接合部のいずれかでせん断耐力が決まる場合のみを対象とする。

(水平せん断力に対する検討)

A タイプでは、3.1.4 のモデル化において、安全側の配慮として、CLT 袖壁に作用する水平せん断力 を鉛直接合部を介して、隣接する RC 柱部材に伝達することとしている。そのため、鉛直接合部を介 した水平せん断力の伝達が可能かどうかを確認する必要がある。本マニュアルでは、式(3.1.78)で求め られる設計用せん断力を、式(3.1.79)で求められる鉛直接合部の水平せん断耐力が上回ることを確認す ることとした。式(3.1.78)に関して、割増係数 n は RC 柱の塑性ヒンジが形成されない場合の割増係数 に準じて 1.25 とした。なお、図 3.1.57 に示すように、本検討を行う必要があるのは、CLT 袖壁に形成 される圧縮ストラットの向きを考えた場合に、引張力による引き戻しが必要となる一端(図中では脚 部)のみとなる。図中の頂部については、摩擦によるせん断伝達が行えない場合でも、RC 柱の側面に CLT 袖壁の側面から支圧力が直接作用するので、ここで示すような検討を行う必要はない。また、式 (3.1.78)では、CLT 袖壁に曲げ圧縮力が作用する場合には、設計用せん断力から摩擦力を差し引いても よいものとしているが、以下のような理由により、安全側の配慮として、当面は摩擦係数 μ を 0 とし て、鉛直接合部の水平せん断耐力の検討を行うこととする。

- ・大変形時の応力伝達に配慮し、Bタイプの水平接合部のせん断設計において、滑り止め等の水平せん断伝達要素の設置を別途求めている。
- ・B タイプでは RC-無収縮モルタル-CLT 間で水平せん断力の伝達が行われるのに対し、A タイプ では RC-無収縮モルタル-鋼材-CLT 間と、CLT 袖壁端にある水平接合部の接合金物を介した水 平せん断力の伝達が行われるものと考えられるため、3.1.3 の B タイプにおける水平接合部のせん断 設計で仮定した値(μ=0.5)よりも摩擦係数が低減される可能性がある。

一方で、本マニュアルでは、鉛直接合部における水平せん断力に対する検討と鉛直せん断力に対す る検討を独立して行っているが、これらのせん断力が実際には同時に作用するため、その点では危険 側の評価となる。しかしながら、Aタイプの接合を行った架構試験体 A では、RC はりの塑性ヒンジ が CLT 袖壁端に形成されたため、B タイプの接合を行った架構試験体 B と比較すると、CLT 袖壁の 上下の仕口面における無収縮モルタルの損傷が抑制されており、大変形時にも摩擦接合によるせん断 伝達にある程度期待できるものと考えられる。しかしながら、上述したように、式(3.1.78)では、摩擦 係数μを0とする安全側の配慮を行っていることから、設計における簡便性も踏まえ、ここでは鉛直 接合部における水平せん断力に対する検討と鉛直せん断力に対する検討を独立して行っても良いもの とした。後述する鉛直接合部のせん断耐力の算定方法と共に、今後の検証によって、より合理的な設 計手法が提案されることに期待したい。

図 3.1.57 A タイプにおける水平せん断耐力の確認方法

式(3.1.79)に示す鉛直接合部の水平せん断耐力のうち、ドリフトピンの降伏耐力は式(3.1.80)で、寸切 りボルトの降伏耐力は式(3.1.81)で、CLT 接合部の集合型破壊時の終局耐力は式(3.1.82)で、鉛直接合材 のウェブの降伏耐力は式(3.1.90)で、鉛直接合材のフランジの曲げ耐力時引張力は式(3.1.91)によって求 める。式(3.1.80)では、水平せん断力を伝達する上で、過度な変形が生じることを避けるために、ドリ フトピンの荷重として降伏耐力を採用したが、水平接合部におけるせん断変形をある程度許容できる のであれば、数値解析によって求めた降伏点以降の荷重を採用する方法も考えられる。

水平せん断耐力として考慮する「寸切りボルト、フランジ、ウェブ、ドリフトピン、CLT 接合部」 の範囲に関しては現状では十分な知見がないため、今後の検証が必要であるが、図 3.1.57 に示すよう に、CLT 袖壁の内法高さの 0.50 倍を目安とすることにした。

$$_{vh}Q_D = n \cdot \max(0, {}_{w}Q_{M0} - \mu_{w}C_c)$$
(3.1.78)

(3.1.79)

(3.1.80)

$${}_{vh}Q_u = \min({}_{vhd}Q_y, {}_{vht}Q_y, {}_{vhs}Q_u, {}_{vhw}Q_y, {}_{vhf}Q_u)$$

ここで、 vhQ_D : 鉛直接合部の設計用水平せん断力、 v_Q_{M0} : Ds 時に CLT 袖壁に作用する水平せん断力、n: 保証設計のための割り増し係数、 μ : 摩擦係数(当面は $\mu=0$ として設計を行う)、 v_C : CLT 袖壁の水平接合部に作用する曲げ圧縮力、 vhQ_u : 鉛直接合部の水平せん断耐力、 $vhdQ_y$: 鉛直接合部のドリフトピンの降伏耐力、 $vhdQ_y$: 鉛直接合部の寸切りボルトの降伏耐力、 $vhsQ_u$: 鉛直接合部の CLT 接合部の集合型破壊時の終局耐力、 $vhwQ_y$: 鉛直接合材のウェブの降伏耐力、 $vhdQ_u$: 鉛直接合材のフランジの曲げ耐力時引張力である。

$$_{vhd}Q_y = 0.5_v n_d \cdot _{dv} p_y$$

ここで、0.5_{vnd}:図 3.1.57 に示す範囲の鉛直接合部におけるドリフトピンの本数、dvpy:ドリフトピン1本あたりの鉛直方向の降伏強度である。

$$_{vht}Q_y = _v n_t \cdot _t a_s \cdot _t \sigma_y$$
(3.1.81)

ここで、0.5_{vnt}:図 3.1.57 に示す範囲の鉛直接合部における寸切りボルトの本数、_{na}:寸切りボルト

の断面積、toy: 寸切りボルトの降伏強度である。

$$vhsQ_u = 2 \cdot Min(P_{R1}, P_{R2})$$

$$P_{R1} = P_{t1} + P_{g1}$$

$$P_{t1} = (W_L - m_d \cdot d) \cdot t_l \cdot l_k F_t$$

$$P_{g1} = W_L \cdot L_d \cdot _t F_{ge}$$

$$P_{R2} = P_{t2} + P_{g2} + P_s$$

$$P_{t2} = (W_b - (m_d - 1) \cdot d) \cdot t_l \cdot l_k F_t$$

$$P_{g2} = W_b \cdot L_d \cdot F_{ge}$$

$$P_{s} = 2 \cdot (L_{d} - (_{s}n_{d} - \frac{1}{2}) \cdot d) \cdot t_{l} \cdot {}_{t}F_{s}$$
(3.1.89)

ここで、 P_{R1} :幅はぎ接着していない CLT パネルのラミナ境界部分が影響する壊れ方の場合の最大耐力、 P_{R2} :幅はぎ接着していない CLT パネルのラミナ境界部分が影響しない壊れ方の場合の最大耐力、 W_L :ドリフトピン接合に掛かるラミナ幅の合計、 $_{IF_t}$:ラミナの引張強度(=12N/mm²)、 $_{Fge}$:CLT の接着積層面のせん断強度(=1.15N/mm²)、 m_d :最上段の列のドリフトピンの本数、d:ドリフトピン の直径、 $_h$:最外層ラミナの厚み、 L_d :CLT 木口面から最上段ドリフトピン位置までの長さ、 W_d :ドリフトピンの右端から左端までの距離、 $_{IF_s}$:ラミナのせん断強度(=1.8N/mm²)、 $_{snd}$:加力方向のドリフトピンの本数である。なお、 P_{R1} 、 P_{R2} に関しては、図 3.1.57に示す範囲を対象とし、1 層分の最大耐力の半分とする。

$$_{vhw}Q_y = _v t_w \cdot (0.5_v L_w - \sum d_h) \cdot _{vw}\sigma_y$$

(3.1.90)

(3.1.82)

(3.1.83)

(3.1.84)

(3.1.85)

(3.1.86)

(3.1.87)

ここで、 vt_w : 鉛直接合材のウェブの厚さ、 0.5_vL_w : 図 3.1.57 に示す範囲の鉛直接合材のウェブの長さ、 d_h : 鋼材に設けた孔(図 3.1.57 に示す範囲の鉛直接合材のウェブに設けたドリフトピン設置用の孔)の直径、 $vw\sigma_y$: 鉛直接合材のウェブの降伏強度である。

$$_{vhf}Q_{u} = \frac{2 \cdot \frac{1}{4} (0.5_{v}L_{f}) \cdot _{v}t_{f}^{2} \cdot _{vf}\sigma_{y}}{_{v}L_{h}}$$

(3.1.91)

ここで、0.5_vL_f:図 3.1.57 に示す範囲の鉛直接合材のフランジの長さ、vt_f:鉛直接合材のフランジ の厚さ、vt₀,:鉛直接合材のフランジの降伏強度、vL_h:鉛直接合材のフランジに設けた寸切りボルト の重心位置からウェブ端部までの長さである。

(鉛直せん断力に対する検討)

骨組解析では、鉛直接合部にせん断ばねを設けており、作用するせん断力を直接評価することが可能である。本マニュアルでは、式(3.1.92)で求められる設計用せん断力を、式(3.1.93)で求められる鉛直接合部の鉛直せん断耐力が上回ることを確認することとした。なお、鉛直接合部には、前述した水平せん断力と鉛直せん断力が同時に作用することもあり得るが、ここでは簡略化のため、それぞれの検討を独立に行ってよいものとした。式(3.1.92)に関して、割増係数nはRC柱の塑性ヒンジが形成されない場合の割増係数に準じて1.25とした。

式(3.1.93)に示す鉛直接合部の鉛直せん断耐力のうち、ドリフトピンの終局耐力は式(3.1.94)で、寸切 りボルトのせん断耐力は式(3.1.95)で、CLT 接合部の集合型破壊時の終局耐力は式(3.1.96)で、鉛直接合 部のウェブのせん断耐力は式(3.1.104)によって求める。式(3.1.94)に関しては、鉛直接合部のせん断ば ねの復元力特性にドリフトピンの荷重-変形関係を採用しており、その剛性や耐力が解析結果に直接 反映されていることから、ここではnによる割り増しを行った設計用せん断力に対して、必要な終局 耐力が確保できることを確認することとした。また、式(3.1.95)は文献[3.1.6]を、式(3.1.96)は文献[3.1.7] の鋼板添え板ビス接合の計算例(強軸試験体の場合)を参考としているが、CLT の片面をビス接合し た場合の評価式であるため、本検討では、両面接合に対応するように、式(3.1.96)において、式(3.1.97)、 (3.1.100)の値を2倍している。また、前述した鉛直接合部の水平せん断力に対する検討とはCLT の繊 維の向きが異なるため、注意が必要である。

なお、式(3.1.93)で求められる鉛直接合部の鉛直せん断耐力には、CLT 袖壁の鉛直断面のせん断耐力 が含まれていないが、鉛直接合部から伝達される鉛直せん断力によって、CLT 袖壁がせん断耐力に到 達するケースについては、3.1.8(e)で示した式(3.1.44)もしくは式(3.1.41)による検討で確認される。

$$_{vv}Q_D = n \cdot _v Q_{M0}$$

$$V_{vv}Q_{\mu} = \min(V_{vvd}Q_{\mu}, V_{vvt}Q_{\mu}, V_{vvs}Q_{\mu}, V_{vvw}Q_{\nu})$$

ここで、 wQ_D : 鉛直接合部の設計用鉛直せん断力、 $vQ_{M0}: D_s$ 時に鉛直接合部に作用する鉛直せん断力、n: 保証設計のための割り増し係数、 wQ_u : 鉛直接合部の鉛直せん断耐力、 $vvdQ_u$: 鉛直接合部のドリフトピンの終局耐力、 $vvdQ_u$: 鉛直接合部の寸切りボルトのせん断耐力、 $vvsQ_u$: 鉛直接合部の CLT 接合部の集合型破壊時の終局耐力、 $vvwQ_y$: 鉛直接合部のウェブのせん断耐力である。

$$_{vvd}Q_u = _v n_d \cdot _{dv} p_u$$

ここで、*n*_d:鉛直接合部におけるドリフトピンの本数、*dxp*_u:ドリフトピン1本あたりの鉛直方向の終局強度(ここでは、数値解析における 20mm 変形時の荷重としてよい)である。

$$_{vvt}Q_u = Min(0.7_t\sigma_y, 0.4\sqrt{_cE_c\cdot_cF_c})\cdot\sum a_t$$
(3.1.95)

ここで、 t_{oy} : 寸切りボルトの降伏強度、 cE_c : コンクリートのヤング係数 (N/mm²)、 cF_c : コンクリートの圧縮強度 (N/mm²)、 a_t : 寸切りボルトの断面積とする。

$$\sum_{vvs} Q_u = 2 \cdot Min(P_{R1}, P_{R2})$$

$$P_{R1} = P_{t1} + P_{g1}$$

$$P_{t1} = (W_L - m_d \cdot d) \cdot t_1 \cdot I_l F_t$$

$$P_{g1} = W_L \cdot L_d \cdot F_{ge}$$

$$P_{R2} = P_{t2} + P_{g2} + P_s$$

 $P_{t2} = (W_b - (m_d - 1) \cdot d) \cdot t_{l'} F_t$

(3.1.101)

(3.1.100)

(3.1.92)

(3.1.93)

(3.1.94)

(3.1.96)

(3.1.97)

(3.1.98)

(3.1.99)

$$P_{g2} = W_b \cdot L_d \cdot {}_t F_{ge}$$

$$P_s = 2 \cdot (L_d - ({}_s n_d - \frac{1}{2}) \cdot d) \cdot t_1 \cdot {}_t F_s$$
(3.1.103)
(3.1.103)
(3.1.103)

ここで、 P_{R1} :幅はぎ接着していない CLT パネルのラミナ境界部分が影響する壊れ方の場合の最大耐力、 P_{R2} :幅はぎ接着していない CLT パネルのラミナ境界部分が影響しない壊れ方の場合の最大耐力、 W_L :ドリフトピン接合に掛かるラミナ幅の合計、 $_iF_t$:ラミナの引張強度(=12N/mm²)、 $_iF_g$:CLTの接着積層面のせん断強度(=1.15N/mm²)、 m_d :最上段の列のドリフトピンの本数、d:ドリフトピン の直径、 t_i :最外層ラミナの厚み、 L_d :CLT 木口面から最上段ドリフトピン位置までの長さ、 W_d :ドリフトピンの右端から左端までの距離、 $_iF_s$:ラミナのせん断強度(=1.8N/mm²)、 $_sn_d$:加力方向のドリフトピンの本数である。

$${}_{vvw}Q_y = {}_v t_w \cdot ({}_v L_w - \sum d_h) \cdot \frac{{}_{vw}\sigma_y}{\sqrt{3}}$$

(3.1.104)

ここで、 vt_w : 鉛直接合材のウェブの厚さ、 vL_w : 鉛直接合材のウェブの長さ、 d_h : 鋼材に設けた孔(鉛 直接合材のウェブに設けたドリフトピン設置用の孔)の直径、 $vw\sigma_y$: 鉛直接合材のウェブの降伏強度で ある。

3.1.10 限界耐力計算を行う場合の考え方

(a) 基本的な考え方

本マニュアルでは、3.1.5 から 3.1.9 において、保有水平耐力計算を行う場合の考え方を示したが、 より安全側の判断となるように、部材種別判定、構造特性係数の設定や保証設計の方法を整理したた め、不合理な設計となっている部分があるものと考えられる。一方、限界耐力計算では、積雪、暴風、 地震の全てに対し直接的な検討を行っていること、建築物に作用する地震力を建築物の変形を算出す ることにより、仕様規定に基づく推定によらず算出していることから、耐久性等の関係規定を除き、 建築基準法施行令第3章第2節から第7節の2までに規定する仕様規定を適用しない選択が可能とな るため、RC ラーメンに挿入する CLT 袖壁を構造部材とみなした検討が行いやすいものと考えられる。 また、保有水平耐力計算で問題となった「設計上の留意点1」における崩壊機構形成後の応力増加に ついても、地震時における建築物の変形が陽に示されることにより、保証設計を行う上での支障も小 さくなるものと考えられる。

一方で、現在、RC 造建築物を対象とした構造計算の大部分は保有水平耐力計算によって行われて おり、限界耐力計算については普及が十分に進んでいないことから、本マニュアルに掲載されている 設計例も、保有水平耐力計算に基づいて構造計算を行ったものである。ここでは、CLT 袖壁付き RC ラーメンに限界耐力計算を適用する場合に問題となるものと考えられる CLT 袖壁の変形性能、等価粘 性減衰定数の評価方法および保証設計の考え方のみを示す。

(b) CLT 袖壁の変形性能の評価方法

限界耐力計算では、建築物の安全限界時における代表変位の 1.5 倍の変形状態まで安定して変形で きることが要求されるため、部材や架構の変形性能を検証し、確保する必要がある。このうち、A タ イプにおいてアンカーボルトを設置するための鋼板挿入ドリフトピン接合部など、引張力を受ける接 合部が破壊する場合の変形に関しては、CLT マニュアル^[3,1,7]等の知見を活用すれば良いが、今回実施 した部材実験や架構実験では、CLT 袖壁の曲げ圧壊やせん断降伏が生じているため、これらの破壊を 防止するための検討が別途必要になる。

(CLT 袖壁の曲げ圧壊について)

A、B タイプのいずれについても、骨組解析において、水平接合部の支圧特性の再現に用いた軸ば ねの軸縮みが 6mm に達した時点を限界変形とする。但し、この 6mm という制限値については、S60-3-3(厚さ 90mm)及び S60-3-4(厚さ 120mm)の CLT 袖壁を用いた載荷実験及び骨組解析の結果から 得られたものであるため、異なる仕様の CLT 袖壁を用いる場合には、別途検討を行い、適切な値を用 いてよい。以下に、水平接合部の軸ばねを用いた CLT 袖壁の変形性能の評価手法の考え方を示す。

部材実験の試験体 AS、BS では、*R*=1/50rad サイクルにおいて、CLT 袖壁の曲げ圧縮縁におけるラミ ナ間の接着面の破壊を伴う耐力低下が生じている。これらの試験体を対象とした簡易モデルによる骨 組解析では、図 3.1.58 に示すように、CLT 袖壁-RC スタブ間の水平接合部の支圧特性を反映した軸 ばねの軸縮みが 6mm 程度まで到達していることから、本マニュアルでは、水平接合部の軸ばねの軸 縮みを一定値以下に抑えることで、ラミナの破断や接着面の破壊を伴う耐力低下を防止することとす る。本検討で対象とした CLT 袖壁は、S60-3-3 (試験体 AS、厚さ 90mm)、S60-3-4 (試験体 BS、厚さ 120mm)のみであり、試験体数も限られていることから、今後の検証が必要であるが、軸縮みの制限 値の目安とした 6mm という数値は、試験体 AS、BS に用いた CLT 袖壁の厚さ(S60-3-3:90mm、S60-3-4:120mm)の厚さの袖壁厚さの 5.0~6.7%、ラミナの厚さ(30mm)の 20%に相当している。

また、詳細モデルを用いた場合の軸ばねの軸縮みの推移も図 3.1.58 に示すが、ブレース置換した CLT 袖壁にせん断変形が生じたことにより、簡易モデルと比較して、全体的に軸縮みの値が小さくなって いる。したがって、詳細モデルを用いる場合には、軸縮みの制限値を 6mm よりも小さい値に再設定す る必要がある。

架構実験の試験体 A では、*R*=1/25rad サイクルにおいて、CLT 袖壁の曲げ圧縮縁におけるラミナの 破断に伴う耐力低下が生じているが、簡易モデルを用いた場合の CLT 袖壁-RC スタブ間の水平接合 部の支圧特性を反映した軸ばねの軸縮みは、図 3.1.59(a)、図 3.1.61(a)に示すように 16mm 程度と部材 実験よりも大きい値となった。試験体 A では、部材実験の試験体 BS と同じ袖壁 S60-3-4(厚さ 120mm) を用いており、本来であれば軸縮みが 6mm に到達した段階で CLT 袖壁の破壊が生じてもおかしくな いが、CLT 袖壁端の水平接合部にアンカーボルトを接合するためのドリフトピン接合部を設けていた ことで、曲げ圧縮領域において、仕口面のみでなくドリフトピンを介した圧縮力の伝達が段階的に行 われた可能性がある。その結果、実際には仕口面における軸ばねの軸縮みが低減され、部材実験より も高い変形性能を示したものと考えられる。

また、架構実験の試験体 B では、CLT 袖壁の曲げ圧縮縁における損傷は軽微に抑えられ、実験終了 時まで耐力低下もほとんど生じなかったが、骨組解析における CLT 袖壁-RC スタブ間の水平接合部 の支圧特性を反映した軸ばねの軸縮みについて、試験体 A と同じ*R*=1/25radにおける値を比較すると、 図 3.1.60(a)、図 3.1.61(a)に示すように、13mm 程度とこちらも部材実験よりも大きい値を示している。 試験体 B では、試験体 A や部材実験の試験体 BS と同じ袖壁 S60-3-4 (厚さ 120mm)を用いているが、 CLT 袖壁端にはドリフトピン接合部は設けておらず、損傷が見られなかったことについて試験体 A と 同じ理由での説明はできない。試験体 B では、水平接合部に無収縮モルタルを充填しているが、図 3.1.21 で示したように、繰り返し載荷によって水平接合部の目地部分の開閉が生じ、また、CLT 袖壁 と接する部分でも RC はりの曲げ変形が大きくなったため、層間変形角の増大に伴って無収縮モルタ ルの剥離、剥落が生じている。そのため、CLT 袖壁の軸縮みが軽減され、CLT 袖壁の損傷が軽微に抑 えられた可能性がある。一方で、部材実験の試験体 AS、BS では、水平接合部にエポキシ樹脂を充填 していたため、試験体 B のような目地部分の剥落、剥離は生じず、このような挙動が確認されなかっ たものと考えられる。なお、架構実験の試験体Aでは、試験体Bと同様に水平接合部に無収縮モルタルを充填していたものの、アンカーボルトや鉛直接合部を設けたこと、CLT 袖壁と接する部分ではRC はりの曲げ変形が小さく抑えられたことから、水平接合部の目地部分の開閉が抑制され、無収縮モルタルの剥離や剥落が軽微に抑えられた。そのため、CLT 袖壁の軸縮みが軽減されず、最終的にCLT 袖壁の曲げ圧縮破壊に至ったものと考えられる。

また、詳細モデルを用いた場合の軸ばねの軸縮みの推移を、図 3.1.59(b)、図 3.1.60(b)に示すが、部 材実験と同様に、ブレース置換した CLT 袖壁にせん断変形が生じたことにより、簡易モデルと比較し て、全体的に軸縮みの値が小さくなっている。

本マニュアルでは、3.1.3 で示したように、架構実験の試験体A、Bの接合方法を採用することとし ている。そのため、上記の評価方法では、CLT 袖壁の変形性能を過小評価する可能性があるが、試験 体Aにおいては、ドリフトピン接合部を含めた CLT 袖壁端の変形性能の評価が難しいこと、試験体B においては、載荷実験と異なり、地震時に一方に変形が集中するようなケースでは、水平接合部の無 収縮モルタルの剥落があまり生じず、CLT 袖壁の軸縮みが軽減されない可能性があることから、部材 実験の結果を基にした評価方法を採用している。なお、架構実験の試験体を対象とした簡易モデルを 用いた骨組解析の結果に軸縮みの制限値 (6mm)を適用した場合でも、算出される限界変形角の値は、 試験体A で *R*=1/46 rad、試験体B で *R*=1/41 rad なり、安全側ではあるが、いずれも *R*=1/50rad 以上の 変形性能は確保されることになる。

図 3.1.59 曲げ圧縮力を受ける CLT 袖壁の最外縁の支圧ばねの軸縮み-変形角関係(試験体 A)

図 3.1.60 曲げ圧縮力を受ける CLT 袖壁の最外縁の支圧ばねの軸縮み-変形角関係(試験体 B)

(CLT 袖壁のせん断降伏について)

CLT 袖壁に作用する水平せん断力に対しては、保有水平耐力計算と同様に、3.1.8(b)で示した設計用 せん断力を用いて、必要な水平せん断力が確保されていることを確認することで、必要な変形性能が 確保されるものと考えられる。

一方、CLT 袖壁に作用する鉛直せん断力に対しては、3.1.8 で示した保有水平耐力計算における部材 種別判定において、CLT 袖壁に作用する水平、鉛直方向の設計用せん断力が、水平、鉛直断面のせん 断耐力を上回る場合、保証設計を満足できないものとして、CLT 袖壁付き RC 柱とみなす場合は FD、 CLT 耐力壁とみなす場合は WD と判定することとしたが、3.1.4 で示したモデル化では、CLT 袖壁の 鉛直断面におけるせん断降伏を許容する(鉛直断面に作用するせん断力がせん断耐力に到達したとし ても、その時点を崩壊メカニズムの形成点とは考えない)こととしている。

本来であれば、CLT 袖壁に生じるせん断変形を定量的に評価して、限界変形を設定することが望ま しいが、簡易モデルでは、鉛直せん断力によって生じるせん断変形は再現できない。そこで、当面は 部材実験、架構実験によって、変形性能が検証された層間変形角 *R*=1/50rad を上限とすることで、CLT 袖壁に対する鉛直せん断力の検討に替えるものとする。

(c) 等価粘性減衰定数の評価方法

RC ラーメンに CLT 袖壁を挿入することで、RC はりのヒンジリロケーション効果に加え、RC 柱の 曲げ耐力の増大が生じることで、水平剛性や水平耐力の増大が見られる。前者に関しては、主に RC はりの主筋がエネルギー消費を行う点は変わらないため、等価粘性減衰定数に及ぼす影響は小さいも のと考えられるが、後者に関しては、エネルギー消費を行わない圧縮軸力が CLT 袖壁付き RC 柱の曲 げ耐力に占める寄与分が増大するため、等価粘性減衰定数の低下が懸念される。

図 3.1.62 に部材実験の荷重変形関係から求めた式(3.1.105)による等価粘性減衰定数の実験値と、式 (3.1.106)による等価粘性減衰定数の計算値の比較を示す。式(3.1.106)は載荷実験と同じく定常ループを 想定した場合の等価粘性減衰定数に相当し、*R*=1/50rad を終点とする面積等価なバイリニア置換によ って求めた降伏点変形を基準に塑性率を算定した。部材実験では、片持ち柱形式の試験体 AS、BS で は、同一変形角における2回目のサイクルにおいて、式(3.1.105)による実験値が式(3.1.106)による計算 値を下回るケースが見られた。

図 3.1.63 に部材実験と同じ手法で架構実験の荷重変形関係から求めた等価粘性減衰定数の実験値と 計算値の比較を示す。架構実験では、RC ラーメンである試験体 C と比較すると、RC ラーメンに CLT 袖壁を挿入した試験体 A、B では、式(3.1.105)による等価粘性減衰定数の実験値が小さくなる傾向が 見られるが、いずれの試験体でも式(3.1.106)による等価粘性減衰定数の計算値は上回った。これは、架 構実験では、RC 柱のみでなく、RC はりによるエネルギー吸収も行われるため、部材実験と比較して 等価粘性減衰定数が大きな値を示したものと考えられる。架構試験体は層数が 2 層と少ないが、建物 の層数が増えれば、CLT 袖壁付き RC 柱に対する RC はりのポテンシャルエネルギーの割合が増加し、 等価粘性減衰定数に及ぼす影響を小さくできるものと考えられることから、層数が 2 層以上の建物を 対象とする場合には、限界耐力計算で一般的に用いられる非定常応答に対応した式(3.1.107)に基づい て等価粘性減衰定数の算定を行って問題ないものと考えられる。また、1 階を除く上層のみに CLT 袖 壁を挿入する場合には、等価粘性減衰定数に及ぼす影響はさらに小さくなるものと考えられる。

$$_{\exp}h_{eq} = \frac{1}{4\pi} \frac{\Lambda W}{W}$$
(3.1.105)

ここで、 ΔW :履歴吸収エネルギー、W:ポテンシャルエネルギーとする。

$$_{cal}h_{eq} = \frac{1}{\pi} (1 - \frac{1}{\sqrt{\mu_y}})$$
(3.1.106)

ここで、
$$\mu_y: R=1/50$$
rad を終点とする面積等価なバイリニア置換によって求めた塑性率とする。
 $_{cal}h_{eq} = 0.25(1 - \frac{1}{\sqrt{\mu_y}})$

ここで、μ_v: R=1/50rad を終点とする面積等価なバイリニア置換によって求めた塑性率とする。

(3.1.107)

(d) 保証設計の方法

限界耐力計算では、建築物の安全限界時における代表変位の 1.5 倍の変形状態まで安定して変形で きることを確認すれば良い。RC 部材に関しては、安全限界変位が 1/75 以下の場合には、保有水平耐 力計算において、設計用せん断力の算定に用いた D。算定時のせん断力を、建築物の安全限界時におけ る代表変位の 1.5 倍の変形状態におけるせん断力に読み替えて、保証設計を行う。

図 3.1.62 部材実験における等価粘性減衰定数の推移

図 3.1.63 架構実験における等価粘性減衰定数の推移

3.1.11 RC--CLT 間の接合方法

本マニュアルでは、3.1.3 で示した A タイプおよび B タイプの接合方法を、RC-CLT 間の水平接合 部及び鉛直接合部に採用しているが、その他の接合方法についても、本マニュアルに示す構造設計法 に基づいた検討を行えば、本構造形式にも適用可能であるが、構造実験等を行い、必要な構造性能を 有していること、想定外の破壊性状を示さないことを確認することが望ましい。ここでは、水平接合 部、鉛直接合部等に関して、想定される接合方法とそれぞれの利点および欠点を整理する。

(a) 水平接合部の設計(金物-CLT 袖壁間)

RCはり(基礎はり)-CLT袖壁間の水平接合部では、図 3.1.64 に示すように、軸方向力(圧縮・引 張)、水平せん断力についての検討が必要になる。水平接合部には、RC 柱に作用する軸力や RC 柱主 筋が負担する引張力による曲げ圧縮合力が作用する。3.1.3 で示した A タイプの接合方法のように、ア ンカーボルトの引張力の伝達を想定して設置した鋼板挿入ドリフトピン接合部が、曲げ圧縮合力の一 部を伝達することはあり得るが、CLT袖壁端では作用する軸力が大きく、接合材を介した伝達が不合 理であるため、通常は CLT袖壁の仕口面を介して、RC 躯体に伝達するものとする。

図 3.1.64 CLT 袖壁付き RC 構造の水平接合部と鉛直接合部に作用する応力の組み合わせ

また、RC はりの塑性ヒンジの位置を CLT 袖壁端に効率的に移動させるためには、CLT 袖壁端にお いて、CLT 袖壁-RC はり間で引張力の伝達を行う必要がある。引張力の伝達方法としては、表 3.1.10 に示すように、「ドリフトピン」、「ビス」、「通しボルト」、「接着」等が考えられるが、RC 躯体への適 用に際して、それぞれメリット、デメリットがある。これらのうち、「ドリフトピン」、「接着」による 接合方法については、部材実験、架構実験で検討を行っているので、参考にされたい。特に CLT 袖壁 の側面に接合金物を接着接合する場合には、接合材に引張力が作用する際に CLT の繊維直交方向の破 壊が生じる可能性があるため、注意が必要である。

3.1.3 で示した B タイプのように、CLT 袖壁の端部に引張力を伝達するアンカーボルトを設けない 場合については、CLT 袖壁の形状に配慮すれば、摩擦力によって、CLT 袖壁に作用する水平せん断力 の大部分を上下の RC はり(基礎はり)に伝達することが可能と考えられるが、本検討では、摩擦の みに期待する条件での載荷実験は実施していないことや、RC 躯体と CLT 袖壁の一体性を確保する観 点から、鉛直接合面に応力伝達用の金物を設けない場合には、せん断伝達用の金物として滑り止めや コッター等を設けることとしている。

接合方法	メリット	デメリット
ドリフト ピン	 ドリフトピンを用いることで、厚 さ方向の全層のラミナに引張力を 伝達できるため、CLT 袖壁の層数が 多い(厚みが大きい)場合に適して いる。 	 ・施工前に CLT 袖壁を加工しておく必要がある。 ・ CLT 袖壁内に鋼板を挿入する場合、引張力と平行な繊維方向のラミナに 切り欠きを設けると、断面欠損となり、圧縮耐力に影響を及ぼす可能性 がある。
ビス	 施工前に CLT 袖壁の加工を行う必要がなく、施工時の位置合わせが容易である。 	 ・ビス1本で伝達できる引張力が小さいため、多数のビス打ちを行う必要がある。 ・ビスが届くラミナにしか引張力を伝達できないため、CLT 袖壁の層数が少ない(厚みが小さい)場合にしか適用できない。
通し ボルト	 通しボルトの取り外しが容易であり、可変性が高い。 	 ・通しボルトを定着するための孔が断面欠損となり、圧縮力、引張力の伝達に影響を及ぼす可能性がある。そのため、壁端からやや離れた位置に 孔を設けることが望ましく、効果が得られにくい。
接着	 施工前に CLT 袖壁の加工を行う必要がなく、施工時の位置合わせが容易である。 接着面を大きく取ることで、せん断力を分散して伝達することができ、局所的な破壊が防止される。 	 ・接着剤は新築向けの材料ではないため、接着面が破壊するようなケースでは、構造設計上の取り扱いが難しい。 ・山形鋼等の金物を介して引張力を伝達する際に、接着面に平行なせん断力だけでなく、接着面の直交方向に引張力が作用すると、CLT が繊維直交方向に引張破壊するため、十分な耐力が得られない。 ・接着されるラミナにしか引張力を伝達できないため、CLT 袖壁の層数が少ない(厚みが小さい)場合にしか適用できない。

表 3.1.10 水平接合部における引張力の伝達方法(金物-CLT 袖壁間)

(b) 鉛直接合部の設計(金物-CLT 袖壁間)

RC 柱-CLT 袖壁間の鉛直接合部では、主に鉛直せん断力の伝達についての検討が必要になる。CLT パネルを耐震要素として活用することを目的とした既往の研究では、CLT パネルを独立した耐震要素 として考え、パネルの上下に水平接合部を付与するタイプが多く、A タイプのように、RC 柱と一体で 挙動することを想定し、パネルの上下だけでなく、パネルの側面にも鉛直接合部を付与するタイプの 検討は限られている。このような形式とする場合、水平接合部と鉛直接合部に重なり合う部分が出て くるため、取り合い部分の納まりが重要になる。鉛直せん断力の伝達方法としては、水平接合部と同 様に、「ドリフトピン」、「ビス」、「接着」、「コッター」等が考えられる。

鉛直接合部においては、図 3.1.64 に示すように、水平接合面に作用する曲げ圧縮合力の一部(もし くは全て)や、曲げ引張合力の一部(もしくは全て)が、鉛直方向のせん断力として作用する。水平 接合面に作用する水平せん断力の一部(もしくは全て)が圧縮力として鉛直接合部の境界面に作用す ることになるが、鉛直方向のせん断の伝達を行う上では、むしろ有利な方向に働くものと考えられる ため、鉛直接合部の設計上は無視しても差し障りない。一方で、RC柱の曲げ変形が大きくなり、塑性 ヒンジが形成されると、塑性ヒンジの周辺部では、CLT 袖壁が RC柱の変形に追随することができず、 鉛直接合面において部分的な離間が生じることが部材実験において確認されていることから、後述す るように、鉛直接合面では、モルタルやエポキシ樹脂による RC 躯体と CLT 袖壁の直接的な鉛直せん 断力の伝達には期待しないものとしている。また、鉛直接合部に金物を設けない場合には、RC 躯体の 変形に伴う CLT 袖壁の脱落防止を目的とした水平接合部に滑り止め等の金物を設置することとした。

(c) 金物-RC 躯体間の接合

ここでは、金物と RC 躯体をボルト締めにより接合する方法について考える。具体的な方法として は、①RC 躯体内にシース管等で設けた孔の中にボルトを通す方法、②RC 躯体内に埋め込んだ高ナッ トにボルト締めする方法、③RC 躯体内に埋め込んだボルトをナット締めする方法が考えられる。表 3.1.11 に各方法のメリット、デメリットを示す。塑性ヒンジの形成が想定され、引張力が作用する箇 所では、①孔の中にボルトを通す方法が、引張力が作用するものの弾性の範囲内であり、主にせん断 伝達に期待する場合には、②高ナットにボルト締めする方法や③ボルトをナット締めする方法の適用 が考えられる。

	①孔を設ける方法	②高ナットを埋め込む方法	③ボルトを埋め込む方法
引張	ボルトのアンボンド区間を比較的長く設定	塑性変形能力が必要な場合は、高ナッ	ボルトの交換ができないため、
	できるため、塑性変形能力は高い。反面、	トに取り付けるボルト側である程度の	塑性化させる部位への適用は適
	初期緊張を行わないと効きが悪い。ボルト	変形能力を持たせる必要がある(RC 躯	切ではない。
	の交換が容易に行え、可変性が高い。	体から高ナットが抜け出す状況は通常	
		想定しない)。	
圧縮	シース管内で座屈する可能性があるため、	抵抗可能	
	一般に圧縮力には抵抗させない。		
せん断	初期緊張力による摩擦抵抗となるため、ボ	高ナット側面の支圧による伝達が期待	ボルト側面の支圧による伝達が
	ルトが塑性化し、伸びが生じるとせん断伝	できる。	期待できる。
	達には期待できない。		
可変性	RC 躯体からの飛び出しがないため、間取の	RC 躯体からの飛び出しがないため、CLT	RC 躯体からボルトが飛び出して
•	変更等に対応しやすい。また、シース管内	袖壁の設置時にも邪魔になりにくく、	いるため、CLT 袖壁の設置時に邪
施工性	の遊びがあるので、微調整はしやすいが、	間取の変更等に対応しやすい。	魔になる可能性があり、間取の
	上下階の締め付けを同時に行う必要があ		変更を行う際には、切断等の対
	る。また、RC はりのせいよりも長いボルト		策が必要になる。
	が必要となり、金物を CLT 袖壁の断面内に		
	収めることが難しい。		
その他	シース管が断面欠損となるので、シース管	RC はり断面の中心寄りに定着できない場	る、コーン破壊に対する耐力が取
	の幅を減らして、RC はりのせん断耐力を計	りにくくなる可能性がある。	
	算するなどの配慮が必要となる。		

表 3.1.11 金物と RC 躯体の接合方法

(d) モルタルやエポキシ樹脂を用いた接合の考え方

CLT 袖壁を RC 躯体の施工時に予め設置する場合を除くと、CLT 袖壁と RC 躯体の間には、施工誤 差を飲み込み、両者の間の応力伝達を滞りなく行うための目地部分が必要となる。目地部分の充填材 料としては、モルタルやエポキシ樹脂が考えられる。本マニュアルでは、エポキシ樹脂を充填する場 合でも、水平目地や鉛直目地におけるせん断伝達には期待しない。これは、部材実験において、CLT 袖壁が周辺の RC 部材の変形に追随できず、接着面近傍のコンクリートに引張破壊が生じ、最終的に 離間やずれが生じたためである。一方で、繰り返し載荷によって、水平目地の離間や接触が生じた場 合にも、目地部分のエポキシ樹脂自体の損傷は軽微に抑えられ、剥落や剥落が生じにくいため、エポ キシ樹脂を用いた場合の方が、大変形時まで CLT 袖壁と RC 躯体の隙間が埋められ、効率的な応力伝 達に寄与するものと考えられる。実際に、エポキシ樹脂を用いた部材実験では、無収縮モルタルを用 いた架構実験と比較して、CLT 袖壁の曲げ圧縮破壊時の変形角が小さくなっているが、その一因とし て、架構実験では水平目地の無収縮モルタルが損傷を受け、剥落したことで、CLT 袖壁に強制される 変形が小さくなり、大変形時まで破壊しなかった可能性が考えられる。

充填材の種類		エポキシ樹脂(湿式)	無収縮モルタル(乾式)
	圧縮応力	十分な応力伝達が期待できる	
RC 骨組一 CLT 袖壁間 の応力伝達	引張応力	コンクリートの引張強度分のみ伝達可能	応力伝達は期待できない
	せん断 応力	摩擦によるせん断伝達を基本とするが、 離間が生じなければ、コンクリートの せん断強度分は伝達可能	摩擦によるせん断伝達を基本とする
	繰り返し 応力	エポキシ樹脂自体が損傷する恐れは小さい	モルタルに亀裂が入り、剥落すると十分な応力伝 達が行えなくなる可能性があるため、メッシュ筋 の挿入などの配慮が必要となる
目地厚		5mm 程度の目地厚でも充填可能であるが、10~ 20mm 程度の目地厚を確保することが望ましい	10mm 程度の目地厚でも充填可能であるが、20mm 程 度の目地厚を確保することが望ましい
施工方法の違い		注射器状の小型のポンプを用いて、複数箇所か ら圧入	やや大型のポンプを用いて、一箇所から圧入
注意点		エポキシ樹脂自体は損傷を受けず、周辺のコン クリート部分の破壊によって耐力が決まる	充填時に、CLT 袖壁に水分が吸われないような配慮 (プライマーの塗布など)が必要

表3.1.12 エポキシやモルタルを用いた充填の特徴

3.1.12 設計例

(a) 建物概要

本設計例では、図 3.1.18 で示した B タイプの接合方法を採用した設計例を示す。表 3.1.13 に対象と した建築物モデル (RC モデル、RC+CLTモデル)の概要を、RC モデルの基礎床伏図、各階床伏図、 Y1、Y3 通り軸組図、X1、X8 通り軸組図、X2~X7 通り軸組図を図 3.1.65、図 3.1.66、図 3.1.67、図 3.1.68 に、RC+CLTモデルの基礎床伏図、各階床伏図、Y1、Y3 通り軸組図、X1、X8 通り軸組図、X2 ~X7 通り軸組図を図 3.1.69、図 3.1.70、図 3.1.71、図 3.1.72 に示す。

RCモデルは、6 階建ての RC 造共同住宅を想定したものであるが、後述する RC+CLTモデルにおいて、X 方向だけでなく、Y 方向にも CLT 袖壁を挿入するプランとしているため、板状住宅において住戸間に設置される Y 方向の連層耐力壁を取りやめ、Y2 構面に間柱を設置するプランとしている。 Y2 構面の柱 C3、C4 は、Y 方向のみが大はりに接続されることになり、X 方向の地震力に対しては抵抗しないものと仮定する。また、各階の階高は 2800~3000mm となっており、共同住宅で通常想定される値(2800mm 程度)よりも高くなっているが、これは後述する RC+CLTモデルにおいて、RC とCLTの複合床を用いる計画となっており、そちらと階高を揃えたためである。

RC+CLT モデルは、RC モデルの X 方向、Y 方向の柱際に CLT 袖壁を挿入したものである。3.1.3 (b)で示したように、各階の水平剛性のバランスにも配慮し、構面内の全てのスパンにおいて、全ての 層に CLT 袖壁が設置される構造的に明解な架構形式を対象とした。X 方向では、意匠的な要求(共同 住宅として必要な開口の確保の観点)から、CLT袖壁のせいと CLT袖壁の端部に設置する滑り止めの せい(1~3F: 200mm、4~6F: 160mm)の和が800mm以下となるように、CLT袖壁のせい(600mm) を決定した。Y 方向の CLT 袖壁の設置箇所は住戸間となるため、CLT 袖壁のせいに制限はないが、 CLT 袖壁せいが長くなると RC はりのスパンが短くなり、RC 部材の保証設計を満足することが難し くなることに加え、3.1.3(c)で示したように、水平せん断力の伝達において必要な摩擦抵抗を確保する ことを想定しているため、CLT 袖壁の寸法比(Dw/ho)が 0.40 以下となるように、CLT 袖壁のせい (750mm)を決定している(X方向:0.295~0.302、Y方向:0.341~0.349)。また、RC+CLTモデル では、CLT袖壁に加え、居室(2~6F)の床スラブを RC(厚さ 200mm)から CLT(厚さ 210mm)に 変更している。但し、RC+CLTモデルでは、遮音性の問題等を踏まえ、CLTの上にトップコンとして 厚さ 120mmの RC 床を設けており、構面間の剛性、耐力差も小さいことから、以降の構造設計では、 剛床仮定が成立するものとしている。なお、本設計例では、RCと CLTの複合床に関する検討は行っ ていないため、構造、防火、耐久性、遮音等の観点での別途検討が必要となる点に留意されたい。ま た、後述するように、本設計例では、CLT床の上にトップコンを設けたこと等の理由により、建築物 の地震層せん断力算定用の重量に、RC モデル(44243kN)と RC+CLT モデル(43387kN)の重量に は(2%程度)の差しかみられないことから、RCとCLTの複合床を通常のRC床に置き換えた場合で も、構造計算の結果に及ぼす影響は小さいことを補足する。

本設計例では、3.1.5 で示した構造計算フローにしたがって、CLT 袖壁が設置された RC 架構を対象 とした一次設計(許容応力度設計)と二次設計(保有水平耐力計算)を行った上で、CLT 袖壁を取り 外した RC 架構のみを対象とした二次設計を実施する。厳密には、RC モデルは、RC+CLTモデルか ら CLT 袖壁を取り除いたモデルではない(RC+CLTモデルでは、RC と CLTの複合床を用いている) が、RC+CLTモデルの地震層せん断力算定用の重量を安全側に評価していることから、ここでは RC モデルの二次設計を行うことで、CLT 袖壁を取り外した RC 架構のみを対象とした検討に代えること とした。

建物用途	共同住宅	
階数	地上6階、地下なし、塔屋なし	
基礎工法	直接基礎	
地盤種別 第二種		
スパン数 X方向:7スパン、Y方向:2スパン		
スパン長さ X方向:6500mm、Y方向:5000mm		
『叱声』	1F: 3000mm、2F: 3000mm、3F: 2950mm	
	4F: 2900mm、5F: 2850mm、6F: 2800mm	
肉注言さ ね	1F: 2200mm、2F: 2200mm、3F: 2200mm	
r 11ム同C、N0	4F: 2200mm、2150mm、5F: 2200mm、6F: 2200mm	

表 3.1.13 建築物モデルの概要 (a) 共通事項

(b)相違点			
建物名	RCモデル	RC+CLT モデル	
構造種別	RC 構造	RC 構造+CLT 構造	
袖壁長さ、 <i>D</i> w	_	X 方向:600mm、Y 方向:750mm	
加 座 同 々 🎝	_	1~3F: 210mm (S60-5-5)	
袖壁/字∂、 <i>l</i> w		4~6F:150mm (S60-7-7)	
水平接合部	_	鋼製滑り止め (SS400)	
鉛直接合部	_	なし	
目地	_	無収縮モルタル(厚さ 30mm 程度)	
	最上階:	最上階:	
	RC(厚さ 200mm)	RC (厚さ180mm)	
広っラブ	廊下、バルコニー:	廊下、バルコニー:	
ホヘノノ	RC(厚さ 180mm)	RC (厚さ150mm)	
	居室床:	居室床:	
	RC(厚さ 200mm)	CLT(厚さ210mm)+RC(厚さ120mm)	

表 3.1.14 に RC モデル、RC+CLT モデルの一般事項を示す。コンクリートの設計基準強度は、CLT 袖壁の圧縮強度(3.1.8 を参考に CLT の圧縮の基準強度の2倍程度を想定)を十分に上回る水準とし たが、RC+CLT モデルでは、CLT 袖壁が負担することで RC 柱に作用する圧縮軸力はむしろ低下する ので、RCモデルから変更は行っていない。

RC+CLT モデルでは、柱脚と各階の大はりが曲げ降伏する全体崩壊形が形成されるように、大はり には細径(D25)で強度が低い(SD345)主筋を、柱には太径(D29)で高強度(SD390)の主筋を用 いた。また、RC+CLT モデルにおける D。算定時応力を用いた保証設計において、せん断余裕度を十 分に確保する必要があったことから、下階の柱や大はりの一部に高強度せん断補強筋(KSS785)を用 いている。高強度せん断補強筋を用いた部材では、評定条件にしたがって、部材耐力の算定を行って いる。また、RC+CLT モデルでは、CLT 袖壁の端部に鋼製の滑り止め(SS400)を設けるが、滑り止 めは RC 基礎はりや RC はりに埋め込んだ寸切りボルトを用いて固定することを想定している。この 際、寸切りボルトは、RC部材のコア内に定着し、且つ、へりあき(寸切りボルトから部材側面までの 長さ)を十分に確保する必要がある。図 3.1.69、図 3.1.70の床伏図の X2~X7 構面のように、CLT 袖 壁が RC 基礎はりや RC はりの中央に設置される場合(MC1、MC2)と、Y1、Y3 構面や X1、X8 構面 のように、CLT 袖壁が RC 基礎はりや RC はりの端部に設置される場合(ME1、ME2)では、滑り止 めの形状や寸切りボルトの径、本数が変わってくるため、ここではそれぞれに対応する設計例を示す こととした。

袖壁はいずれもスギの CLT とし、1~3 階は S60-5-5、4~6 階は S60-7-7 とした。CLT を S60 とした 理由は、CLT 袖壁端に設ける鋼製の滑り止めにおいて、CLT 袖壁の木口面における支圧耐力を十分に 確保するために、材軸方向だけでなく、材軸直交方向についても一定以上の圧縮強度が得られるよう に配慮したためである。

RC+CLT モデルでは、RC ラーメンと CLT 袖壁を一体で施工するのではなく、RC ラーメンの施工 後に、CLT 袖壁を挿入する形を想定している。そのため、RC ラーメンと CLT 袖壁の間に無収縮モル タルを充填することで、両者の一体性を確保する必要がある。無収縮モルタルの圧縮強度は、摩擦力 による応力伝達に支障が出ないように、隣接する CLT 袖壁や RC 部材の圧縮強度を十分に上回る水準 とする。なお、3.1.2 で示した架構実験では、縮尺 2/3 の試験体において目地厚を 20mm としているこ とから、目地厚は 20~30mm 程度が目安となる。目地厚が小さすぎると無収縮モルタルの充填が難し くなるが、目地厚が大きすぎると剥落が生じやすくなり、RC ラーメンと CLT 袖壁の間の応力伝達に 支障が出るため、ワイヤーメッシュや曲げ補強筋による補強が必要となる。

1. コンクリート	基礎、1 階床~3 階床	: 普通コンクリート F _c =36N/mm ²
	3 階柱~5 階床	: 普通コンクリート F _c =33N/mm ²
	5 階柱~R 階床	: 普通コンクリート F _c =30N/mm ²
	階段室デッキ上コンクリート	: 普通コンクリート F _c =21N/mm ²
2. 鉄筋	D10~D16 せん断補強筋・床・壁	: SD295A
	D19~D25 はり主筋	: SD345
	D29 柱主筋	: SD390
	S13、S16 せん断補強筋	: KSS785
3. 基礎	独立基礎 (仮定)	
4. 鋼材	H形鋼	: SN400B
	滑り止め (MC1、MC2、ME1、ME2)	: SS400
	M16、M20 ボルト (MC1、MC2)	: 強度区分 5.6
	M24、M30 ボルト (ME1、ME2)	: 強度区分 5.6
5. CLT	袖壁	: スギ S60-7-7(1~3 階)
		: スギ S60-5-5(4~6 階)
6. モルタル	RC 柱-CLT 袖壁間	: 無収縮モルタル
	RC はり、基礎はり-CLT 袖壁間	*隣接部材のコンクリートの設計基準強 度を十分に上回る(例えば、1.5 倍以上) 圧縮強度を有することを確認する。

表 3.1.14 一般事項

図 3.1.65 基礎床伏図、1 階床伏図(RC モデル)

図 3.1.67 Y1、Y3 通り軸組図 (RC モデル)

図 3.1.68 X1~X8 通り軸組図 (RC モデル)

図 3.1.71 Y1、Y3 通り軸組図 (RC+CLT モデル)

図 3.1.72 X1~X8 通り軸組図 (RC+CLT モデル)

(b) 断面リスト

図 3.1.73、図 3.1.74、図 3.1.75 に地中はり、小はりの断面リストを示す。

特記なき限り 1.巾止筋:D10-@1000 2.2段筋受け筋:D10-@1000 地中梁断面リスト

図 3.1.73 地中はり断面リスト (RC モデル、RC+CLT モデル)

図 3.1.74 地中小はり断面リスト (RC モデル、RC+CLT モデル)

小梁梁断面リスト 特記なき限り 1.巾止筋:D10-@1000 2.2段筋受け筋:D10-@1000

符号	E	31	B2	E	33	CG1
位置	端部	中央	全断面	端 部	全断面	
断面	350 x	600	300 x 500	300 ×	< 600	400 x 600
上筋	5-D25	3-D25	3-D25	4-D25	3-D25	5-D25
下筋	3-D25 4-D25		3-D25	3-D25 3-D25		4-D25
S T	□-D10	-@150	□-D10-@200	10-@200		□-D10-@150
腹筋	2-D)10	-	2-0	010	2-D10

図 3.1.75 小はり断面リスト (RC モデル、RC+CLT モデル)

図 3.1.76 に柱断面のリストを、図 3.1.77 に大はり断面のリストを示す。RC モデル、RC+CLT モデ ルのいずれについても、柱脚と各階の大はりが曲げ降伏する全体崩壊形が形成されるように断面を設 定しているため、RC モデルでは、柱断面の主筋量や帯筋量がやや過大となっている。一方、RC+CLT モデルでは、全体崩壊形が形成されやすいように、RC モデルにおいて短期許容応力度設計を満足で きる範囲で大はりの主筋量を減らしている。1~4 階の柱及び 2 階の大はりでは、RC+CLT モデルの *D*_s算定時応力を用いた保証設計において、せん断余裕度を十分に確保する必要があったことから、高 強度せん断補強筋 (KSS785)を用いている。また、RC 大ばりのカットオフ位置では、文献[3.1.2]によ る必要定着長さを満足できるようにカットオフ長さを決定している。

図3.1.78にスラブリストを、図3.1.79、図3.1.80に壁リストを、図3.1.81、図3.1.82に滑り止めリストを示す。スラブリストでは、構造的な検証を行っていないRC+CLTモデルのCLTスラブに関する記載を割愛している。滑り止めリストでは、構面ごとに2種類(MC、ME)の滑り止めを設計しており、滑り止めの固定に用いるために、予め基礎はりや大はりに埋め込んで打設を行う寸切りボルトの配置によって、ウェブの枚数と厚さを調整している。なお、寸切りボルトの配置は、文献[3.1.6]のあと施工アンカーに関する構造規定を参考に決めているが、へりあきの条件(ボルト径の2.5倍以上かつ主筋の内側)は満足できるものの、意匠上の理由により、滑り止めのせいを一定以下(200mm以下)に抑える必要があることから、ピッチの条件(ボルト径の7.5倍以上かつ300mm以下)は満足できなかった。寸切りボルトには、せん断力だけでなく、引張力も作用するため、例えば、3.1.2で示した架構試験体Bのように、大はりを貫通するように寸切りボルトを配置する等、十分な定着が取れるように配慮することが望ましい。

柱断面リスト	特記なき限り	1.巾止筋:D10-@500	2.D29:SD390	D13~D16:SD295A

		1110.000 100.0	1.10 IL M.D 10 @ 300 Z.DZ	3.3D330 D10 D10.3D2	0071		
陛	竹 문	C1	C2	03	C4		
гн	19 .2	01	02	00	04		
	柱頭側柱梁接合	-D13-@120	-D13-@120	□ −D13−@150	□ −D13−@120		
	10 P 9104 196 (00/)00						
		p 0 0 q	p 0 0 q	popoq	p 0 0 0 9		
	Y	p	P				
OFF	A .		p d	p d			
6階	l "	bd	60d	b_a_tL_a_d	b0d		
	k ⊸⊳X						
	断面	650 x 650	650 x 650	650 x 650	650 x 650		
	六	14 020	10 000	14 000	14 D00		
	土肋	14-D29	12-D29	14-D29	14-D29		
	HOOP	-D13-@100	-D13-@100	□-D13-@100	-D13-@100		
	柱頭側柱梁接合	D12_@120	D-D12-@100				
	部内横捕強筋	013-@120					
			p 0 0 9		p-0-0-0-0		
		[[]			P		
	Υ		P				
5陛	4	p ! o					
UPH		اهــــــــــــــــــــــــــــــــــــ	اه ف ما	ممهمه	لممقمط		
	∲—⊳X						
	断面	700 x 700	700 x 700	700 x 750	700 x 700		
	<u>ъ</u>	10 000	14 000	10 200	10 000		
	土肋	16-D29	14-D29	16-D29	16-D29		
	HOOP	-D13-@100	-D13-@100	-D13-@100	-D13-@100		
	计可能计算接合						
	部内橫補強筋	S13-@120(KSS785)		S13-@120(KSS785)	−S13−@120(KSS785)		
		p-o-o-q	P-0-0-9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	p • • • • • •		
		P _ d					
	V	p =		[[[]]]]]]	p r d		
. The	1,						
4階	4						
	- v	<u>u</u>	<u>uu</u> a	beebeed			
	· ~^						
		700 700	700 700	700 900	700 700		
	町山	700 x 700	700 x 700	700 x 800	700 x 700		
	主筋	16-D29	14-D29	18-D29	16-D29		
	HOOD		D10 @100				
	HUUP	(KSS785)	@100		-513-@100(K55785)		
	柱頭側柱梁接合	-S13-@120(KSS785)	-D13-@120	-S13-@120(KSS785)	-S13-@120(KSS785)		
	RFP 9104 THE 28-80						
		p-0-0-q	p 0 0 9	000000	poopooq		
	V						
- This	'			e ! e			
3階	f f						
	X III			لممعمط			
	blat -						
	床hr nin	700 x 700	700 x 700	700 x 800	700 x 700		
	断面	700 x 700	700 x 700	700 x 800	700 x 700		
	断面 主筋	700 x 700 18-D29	700 × 700 14–D29	700 x 800 18-D29	700 x 700 16-D29		
	町 面 主 筋 HOOP	700 x 700 18-D29 -\$13-@100(K\$\$785)	700 × 700 14-D29 -D13-@100	700 x 800 18-D29 -\$13-@100(KS\$785)	700 x 700 16-D29 -S13-@100(KSS785)		
	町 面 主 筋 HOOP 	700 x 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785)	700 x 700 14-D29 -D13-@100	700 x 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785)	700 x 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785)		
	町 主 筋 HOOP	700 x 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785)	700 × 700 14-D29 -D13-@100 -S13-@100(KSS785)	700 x 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785)	700 x 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785)		
	町 直 筋 HOOP ^{柱頭} 側柱衆後合 都内横補強筋	700 x 700 18−D29 □-S13-@100(KSS785) □-S13-@100(KSS785)	700 × 700 14-D29 □ -D13-@100 □ -S13-@100(KSS785)	700 x 800 18−D29 □−S13−@100(KSS785) □−S13−@120(KSS785)	700 x 700 16−D29 □-S13-@100(KSS785) □-S13-@120(KSS785)		
	町 直 筋 HOOP 柱 顕衡柱梁接合 部内機補強筋	700 x 700 18–D29 -S13-@100(KSS785) -S13-@100(KSS785)	700 × 700 14-D29 -D13-@100 -S13-@100(KSS785)	700 x 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) [Performance]	700 x 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785)		
	町 面 主 筋 HOOP 柱頭側柱梁接合 部內機補強筋	700 x 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785)	700 × 700 14-D29 □-D13-@100 □-S13-@100(KSS785)	700 x 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785)	700 x 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785)		
	町 面 主 筋 HOOP 柱頭側柱梁接合 部內橫補強筋	700 x 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785)	700 × 700 14-D29 □-D13-@100 □-S13-@100(KSS785)	700 x 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785)	700 x 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785)		
	町 面 主 筋 HOOP ^{柱顕側柱梁接合 部内機補強筋}	700 x 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785) -S13-@100(KSS785)	700 × 700 14−D29 □-D13−@100 □-S13−@100(KSS785)	700 x 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785)	700 x 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 		
2階	町 面 主 筋 HOOP 4頭側は漂ね合 郡内欄補強筋	700 x 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785)	700 x 700 14-D29 -D13-@100 -S13-@100(KSS785)	700 x 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) -S13-@120(KSS785)	700 x 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785)		
2階	町 国 主 筋 HOOP	700 x 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785) -S13-@100(KSS785)	700 × 700 14-D29 □-D13-@100 □-S13-@100(KSS785)	700 x 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 	700 x 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 		
2階	町 田 王 筋 HOOP	700 x 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785)	700 x 700 14-D29 -D13-@100 -S13-@100(KSS785)	700 x 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 	700 x 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 		
2階	断 面 主 筋 HOOP	700 x 700 18-D29 -S13-@100(KSS785) -S13-@100(KS785) -S13-@100(KS785) -S13-@100(KS785) -S13-@100(KS785) -S13-@100(KS785) -S13-@100(KS785) -S13-@100(KS785) -S13-@100(KS785) -S13-@100(KS785) -	700 × 700 14-D29 □-D13-@100 □-S13-@100(KSS785)	700 x 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 	700 x 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 		
2階	町 田 日 田 田 田 田 田 田 田 田 田 田 王 筋 田 田 田 王 筋 田 田 田 王 第 一 日 田 田 田 田 田 田 田 田 田 田 田 田 田 田 田 田 田 田	700 x 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785)	700 x 700 14-D29 -D13-@100 -S13-@100(KSS785)	700 x 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 	700 x 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 		
2階	町 車 新 HOOP	700 x 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785)	700 × 700 14-D29 □-D13-@100 □-S13-@100(KSS785)	700 x 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 	700 x 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 		
2階	町 面 主 筋 HOOU 株式の 部の構成 第 4 第 の 構成 第 4 第 の 4 第 の 4 第 の 4 第 の 4 第 の 4 第 の 4 第 の 4 第 2 第 合 の 4 第 第 合 の 4 第 第 合 の 4 第 第 合 の 4 第 第 合 の 4 第 第 合 の 4 第 第 合 の 4 第 第 合 ろ の 4 第 第 合 ろ の 4 第 第 合 ろ の 4 第 第 合 ろ の 4 第 5 う ら ろ ろ の 4 第 5 う ら ろ ろ の 月 の 日 日 日 日 日 日 日 日 日 日 日 日 日	700 x 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785)	700 x 700 14-D29 -D13-@100 -S13-@100(KSS785) 750 x 750 14-D29 -200(KSS785)	700 x 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 	700 x 700 16-D29 -S13-@100(KSS785) -S13-@120(KS5785) -S13-@120(KS5785) -S13-@120(KS5785) -S13-@120(KS785) -S13-@120(KS776) -S13-@120(KS776) -S13-@100(KS776) -S13-@100(KS776) -S13-@100(KS776) -S13-@100(KS776) -S13-@100(KS776) -S13-@100(KS776) -S13-		
2階	断 面 主 筋 HOOP 4000 4000 4000 4000 4000 4000 2000 200	700 x 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785)	700 × 700 14-D29 □-D13-@100 □-S13-@100(KSS785) 750 × 750 14-D29 □-S13-@100(KSS785)	700 x 800 18-D29 □-S13-@100(KSS785) □-S13-@120(KSS785) □-S13-@120(KSS785) 700 x 800 18-D29 □-S13-@100(KSS785)	700 x 700 16-D29 □-S13-@100(KSS785) □-S13-@120(KSS785) □-S13-@120(KSS785) 700 x 700 16-D29 □-S13-@100(KSS785)		
2階	町 車 新 HOOP	700 × 700 18-D29 □-S13-@100(KSS785) □-S13-@100(KSS785)	700 × 700 14-D29 □-D13-@100 -S13-@100(KSS785)	700 × 800 18-D29 □-S13-@100(KSS785) □-S13-@120(KSS785)	700 × 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 		
2階	时 直 前 HOOP 4 8 4 8 9 4 8 9 4 8 5 4 8 5 5 5 5 5 5 5 5 5 5 5 5 5	700 × 700 18-D29 □-S13-@100(KSS785) □-S13-@100(KSS785)	700 × 700 14-D29 □-D13-@100 □-S13-@100(KSS785) 750 × 750 14-D29 □-S13-@100(KSS785) ⊞-S13-@150(KSS785)	700 x 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 700 x 800 18-D29 -S13-@100(KSS785) -S13-@100(KSS785) -S16-@150(KSS785)	700 x 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 700 x 700 16-D29 -S13-@100(KSS785) -S13-@100(KSS785) -S16-@150(KSS785)		
2階	町 直 主 筋 HOOP Huget建設会 世 部件構構変 が ・ 、 、 、 、 、 、 、 、 、 、 、 、 、	700 × 700 18-D29 □-S13-@100(KSS785) □-S13-@100(KSS785) 750 × 750 18-D29 □-S13-@100(KSS785) ⊞-S16-@150(KSS785)	700 × 700 14-D29 □-D13-@100 -S13-@100(KSS785) 750 × 750 14-D29 □-S13-@100(KSS785) ⊞-S13-@150(KSS785)	700 x 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 	700 x 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 700 x 700 16-D29 -S13-@100(KSS785) -S16-@150(KSS785)		
2階	町 直 筋 HOOP 4週904歳第26 野り福祉型約 Y ↓ 数 丁 面 主 筋 一 の 2 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5	700 × 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785)	700 × 700 14-D29 -D13-@100 -S13-@100(KSS785) 750 × 750 14-D29 -S13-@100(KSS785) H-S13-@100(KSS785) -S13-@150(KSS785) 	700 x 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 700 x 800 18-D29 -S13-@100(KSS785) -S13-@100(KSS785) -S13-@100(KSS785) -S16-@150(KSS785)	700 x 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 		
2階	町 直 筋 HOOP 単調無経費除合 肥内補補強務 Y A → → → → → → → → → → → → →	700 × 700 18-D29 □-S13-@100(KSS785) □-S13-@100(KSS785) 750 × 750 18-D29 □-S13-@100(KSS785) Ⅲ-S16-@150(KSS785) □-S13-@100(KSS785) Ⅲ-S16-@150(KSS785)	700 × 700 14-D29 □-D13-@100 □-S13-@100(KSS785) 750 × 750 14-D29 □-S13-@100(KSS785) □-S13-@150(KSS785) □-S13-@150(KSS785) □-S13-@150(KSS785)	700 x 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 700 x 800 18-D29 -S13-@100(KSS785) -S16-@150(KSS785) (******)	700 x 700 16-D29 □-S13-@100(KSS785) □-S13-@120(KSS785) □-S13-@120(KSS785) 0 -S13-@100(KSS785) □-S13-@100(KSS785) □-S16-@150(KSS785) □-S16-@150(KSS785)		
2階	町 直 新 HOOP 社園和建築は合 影 別補補強的 Y A → → X 断 面 上 数 HOOP 本 数 の 単 数 の 本 数 、 、 、 、 、 、 、 、 、 、 、 、 、	700 × 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785)	700 × 700 14-D29 -D13-@100 -S13-@100(KSS785) 750 × 750 14-D29 -S13-@100(KSS785) -S13-@100(KSS785) -S13-@150(KSS785) -S13-@150(KSS785)	700 x 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 700 x 800 18-D29 -S13-@100(KSS785) S16-@150(KSS785) -S16-@150(KSS785)	700 x 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 		
2階	町 直 新 HOOP 単調卵県産発き合 部の料理研究 部の料理 部の料理 部の 単 調卵県産発き合 部の ド の ・ 一 一 、 、 、 、 、 、 、 、 、 、 、 、 、	700 × 700 18-D29 □-S13-@100(KSS785) □-S13-@100(KSS785)	700 × 700 14-D29 □-D13-@100 □-S13-@100(KSS785) 750 × 750 14-D29 □-S13-@100(KSS785) ⊞-S13-@150(KSS785) □-S13-@150(KSS785) □-S13-@150(KSS785)	700 x 800 18-D29 □-S13-@100(KSS785) □-S13-@120(KSS785) □-S13-@120(KSS785) □-S13-@100(KSS785) □-S13-@100(KSS785) □-S16-@150(KSS785) □-S16-@150(KSS785)	700 × 700 16-D29 □-S13-@100(KSS785) □-S13-@120(KSS785) □-S13-@120(KSS785) 0 × 700 16-D29 □-S13-@100(KSS785) □-S16-@150(KSS785) □-S16-@150(KSS785)		
2階	町 直 筋 HOOP 世 調 の 起 要 は 歴 学 構 数 市 ・ ン X 数 一 一 ン X 数 一 一 ン X 数 一 一 ン X 数 一 一 ン ス 、 、 、 、 、 、 、 、 、 、 、 、 、	700 × 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785)	700 × 700 14-D29 -D13-@100 -S13-@100(KSS785) 750 × 750 14-D29 -S13-@100(KSS785) -S13-@150(KSS785) -S13-@150(KSS785)	700 x 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 	700 x 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 		
2階	町 直 筋 HOOP 4週期供業符合 部 が 部 ボ 新 BO 100 100 100 100 100 100 100 10	700 × 700 18-D29 □-S13-@100(KSS785) □-S13-@100(KSS785) 750 × 750 18-D29 □-S13-@100(KSS785) ⊞-S16-@150(KSS785)	700 × 700 14-D29 □-D13-@100 □-S13-@100(KSS785) 750 × 750 14-D29 □-S13-@100(KSS785) ⊞-S13-@100(KSS785) □-S13-@150(KSS785) □-S13-@150(KSS785) □-S13-@150(KSS785)	700 x 800 18-D29 □-S13-@100(KSS785) □-S13-@120(KSS785) □-S13-@120(KSS785) □-S13-@100(KSS785) □-S13-@100(KSS785) □-S16-@150(KSS785) □-S16-@150(KSS785) □-S16-@150(KSS785)	700 × 700 16-D29 □-S13-@100(KSS785) □-S13-@120(KSS785) 0 × 700 16-D29 □-S13-@100(KSS785) 10 -S16-@150(KSS785) 11 -S16-@150(KSS785) 11 -S16-@150(KSS785)		
2階	町 直 筋 HOOP 世 調 御 起 契 特 合 一 米 X 野 面 正 筋 - - - - - - - - - - - - -	700 × 700 18-D29 □-S13-@100(KSS785) □-S13-@100(KSS785)	700 × 700 14-D29 □-D13-@100 -S13-@100(KSS785) 750 × 750 14-D29 □-S13-@100(KSS785) □-S13-@100(KSS785) □-S13-@150(KSS785) □-S13-@150(KSS785)	700 x 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 700 x 800 18-D29 -S13-@100(KSS785) -S13-@100(KSS785) -S16-@150(KSS785) -S13-@150(KS5785) -S13-@150(KS5785) -S13-@150(KS5785) -S13-@150(KS578	700 x 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 700 x 700 16-D29 -S13-@100(KSS785) -S16-@150(KSS785) -S16-@150(KSS785) -S16-@150(KSS785)		
2階	町 直 前 HOOP 4 調 朝 4 調 朝 4 調 朝 4 二 第 六 HOOP 4 三 前 HOOP 4 三 前 HOOP 4 三 前 日 4 三 前 日 4 三 日 4 三 日 4 三 日 4 三 日 4 三 日 4 三 日 4 三 5 4 二 5 4 二 5 4 二 5 4 二 5 5 5 5 5 5 5 5 5 5 5 5 5	700 × 700 18-D29 □-S13-@100(KSS785) □-S13-@100(KSS785) 750 × 750 18-D29 □-S13-@100(KSS785) ⊞-S16-@150(KSS785) 750 × 750 18-D29 □-S13-@100(KSS785)	700 × 700 14-D29 □-D13-@100 □-S13-@100(KSS785) 750 × 750 14-D29 □-S13-@100(KSS785) ⊞-S13-@100(KSS785) □-S13-@150(KSS785) □-S13-@150(KSS785) □-S13-@150(KSS785) □-S13-@150(KSS785) □-S13-@150(KSS785) □-S13-@150(KSS785) □-S13-@150(KSS785) □-S13-@150(KSS785) □-S13-@150(KSS785) □-S13-@150(KSS785) S13-@150(KS785) S13-@150(KS785) S13-@150(KS785) S13-@150(KS785) S13-@150(KS785) S13-@150(KS785) S13-@150(KS785) S13-@150(KS785) S13-@150(KS785) S13-@150(KS785) S13-@150(KS785) S13-@150(KS785) S13-@150(KS785) S13-@150(KS785) S13-@150(KS785) S13-@150(KS785) S13-@150(KS785) S13-@150(KS785) S13-@150(KS785) S13-@150(KS785	700 × 800 18-D29 □-S13-@100(KSS785) □-S13-@120(KSS785) 0.0000 0.0000 18-D29 0.0000 18-D29 0.00000 18-D29 0.00000 0.00000 0.000000 0.00000000	700 × 700 16-D29 □-S13-@100(KSS785) □-S13-@120(KSS785) 000 × 700 16-D29 □-S13-@100(KSS785) 000 × 700 16-D29 0.513-@100(KSS785) 0.516-@150(KS5785) 0.516-@150(KS5785) 0.516-@100(KS5785) 0.516-@100(KS5785) 0.516-@1		
2階	町 面 主 筋 HOOP 社 調例は建発合 影 デ 4 調例は建発合 影 一 米 2 、 次 、 、 、 、 、 、 、 、 、 、 、 、 、	700 × 700 18-D29 □-S13-@100(KSS785) □-S13-@100(KSS785) 750 × 750 18-D29 □-S13-@100(KSS785) ⊞-S16-@150(KSS785) 750 × 750 750 × 750	700 × 700 14-D29 -D13-@100 -S13-@100(KSS785) 750 × 750 14-D29 -S13-@100(KSS785) -S13-@100(KSS785) -S13-@150(KSS785) 750 × 750 750 × 750	700 x 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 700 x 800 18-D29 -S13-@100(KSS785) -S13-@100(KSS785) -S16-@150(KSS785) -S13-@100(KSS785) -S14-@150(KS5785) -S14-@100(KS5785) -S14-@100(KS5785) -S14-@100(KS5785) -S	700 × 700 16-D29 □-S13-@100(KSS785) □-S13-@120(KSS785) □-S13-@120(KSS785) □-S13-@100(KSS785) □-S13-@100(KSS785) □-S16-@150(KSS785) □-S16-@150(KSS785) □-S16-@150(KSS785) □-S16-@150(KSS785) □-S16-@150(KSS785) □-S16-@150(KSS785) □-S16-@150(KSS785) □-S13-@100(KSS785) □-S13-@100(KSS785) □-S13-@100(KSS785) □-S13-@100(KSS785) □-S13-@100(KSS785) □-S13-@100(KSS785) □-S13-@100(KSS785) □-S13-@100(KSS785) S13-@100(KS5785) S13-		
2階	町 面 主 筋 HOOP 4週944度第6 約944編集第6 平 X 断 面 主 筋 HOOP 4週944度第6 平 X 断 面 主 筋 HOOP 2 4週944度第6 第 日 2 第 4 第 9 4 第 9 4 第 9 4 第 9 4 第 9 4 第 9 4 第 9 4 第 9 5 8 1 4 9 4 8 1 8 1 4 1 9 1 4 1 9 1 4 1 9 1 4 1 9 1 4 1 9 1 4 1 1 9 1 4 1 1 9 1 4 1 1 9 1 4 1 1 9 1 4 1 1 9 1 1 1 1	700 × 700 18-D29 □-S13-@100(KSS785) □-S13-@100(KSS785) 750 × 750 18-D29 □-S13-@100(KSS785)	700 × 700 14-D29 -D13-@100 -S13-@100(KSS785) 750 × 750 14-D29 -S13-@100(KSS785) -S13-@100(KSS785) -S13-@100(KSS785) -S13-@100(KSS785) 750 × 750 14-D29 -S13-@100(KSS785) 750 × 750 14-D29	700 x 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 700 x 800 18-D29 -S13-@100(KSS785) -S13-@100(KSS785) -S13-@100(KSS785) -S16-@150(KSS785) 700 x 800 18-D29 700 x 800 18-D29	700 × 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 		
2階	町 面 主 筋 HOOP 世調無理要性合 肥料補補強語 Y A ● 一 一 X 断 面 主 筋 一 、 、 、 、 、 、 、 、 、 、 、 、 、	700 × 700 18-D29 □-S13-@100(KSS785) □-S13-@100(KSS785) 750 × 750 18-D29 □-S13-@100(KSS785)	700 × 700 14-D29 □-D13-@100 □-S13-@100(KSS785) 750 × 750 14-D29 □-S13-@100(KSS785) □-S13-@150(KSS785) 0 750 × 750 16-D29 □-S13-@100(KSS785) 17-S13-@100(KSS785) 17-S13-@	700 × 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 0 18-D29 -S13-@100(KSS785) 0 18-D29 -S13-@100(KSS785) 19-S16-@150(KSS785) 10-S16-@150(KSS785) 18-D29 18-D29 18-D29 18-D29	700 × 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 700 × 700 16-D29 -S16-@150(KSS785) 700 × 700 16-D29 700 × 700 16-D29 700 × 700 16-D29 700 × 700 16-D29 700 × 700 16-D29		
2階	町 面 主 筋 HOOP 世頭無理要性合 部の場種現態 Y A ● → → X 断 面 主 筋 HOOP 学 の 単一 の の の の の の の の の の の の の の の の の	700 × 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785)	700 × 700 14-D29 -D13-@100 -S13-@100(KSS785) 750 × 750 14-D29 -S13-@100(KSS785) -S13-@100(KSS785) 750 × 750 16-D29 -S13-@100(KSS785)	700 x 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 700 x 800 18-D29 -S13-@100(KSS785) -S16-@150(KSS785) 700 x 800 18-D29 -S13-@100(KSS785) 700 x 800 18-D29 -S13-@100(KSS785)	700 × 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 00 × 700 16-D29 -S13-@100(KSS785) III-S16-@150(KSS785) 700 × 700 16-D29 -S13-@100(KSS785) III-S16-@150(KSS785) 700 × 700 16-D29 -S13-@100(KSS785)		
2階	町 直 筋 HOOP 4週904度256 約 4週904度256 約 第 5 5 5 5 5 5 5 5 5 5 5 5 5	700 × 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785) 18-D29 750 × 750 18-D29 -S13-@100(KSS785) 18-D29 -S13-@100(KSS785) 18-D29 -S13-@100(KSS785) 18-D29 -S13-@100(KSS785) 18-D29 -S13-@100(KSS785) 18-D29 -S16-@150(KSS785) 18-D29 -S16-@100(KSS785)	700 × 700 14-D29 -D13-@100 -S13-@100(KSS785) 750 × 750 14-D29 -S13-@100(KSS785) 750 × 750 14-D29 -S13-@100(KSS785) 750 × 750 14-D29 -S13-@100(KSS785)	700 x 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 700 x 800 18-D29 -S13-@100(KSS785) -S16-@150(KSS785) 700 x 800 18-D29 -S16-@100(KSS785) 700 x 800 18-D29 -S16-@100(KSS785)	700 × 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 00 × 700 16-D29 -S13-@100(KSS785) III -S16-@150(KSS785) 700 × 700 16-D29 -S13-@100(KSS785) III -S16-@150(KSS785) 700 × 700 16-D29 -S16-@100(KSS785)		
2階	町 直 筋 HOOP 世 調用設設現合 部門補補 調査 新 面 主 新 一 平 X 新 面 正 天 、 、 、 、 、 、 、 、 、 、 、 、 、	700 × 700 18-D29 □-S13-@100(KSS785) □-S13-@100(KSS785) 750 × 750 18-D29 □-S13-@100(KSS785) Ⅲ-S16-@150(KSS785) 750 × 750 20-D29 Ⅲ-S16-@100(KSS785)	700 × 700 14-D29 □-D13-@100 -S13-@100(KSS785) 750 × 750 14-D29 □-S13-@100(KSS785) □-S13-@150(KSS785) 750 × 750 16-D29 □-S13-@100(KSS785)	700 × 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 000 × 800 18-D29 -S13-@100(KSS785) III-S13-@100(KSS785) III-S16-@100(KSS785) 700 × 800 18-D29 700 × 800 18-D29 III-S16-@100(KSS785)	700 × 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 700 × 700 16-D29 -S13-@100(KSS785) 		
2階	町 直 筋 HOOP	700 × 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785)	700 × 700 14-D29 -D13-@100 -S13-@100(KSS785) 750 × 750 14-D29 -S13-@100(KSS785) -S13-@100(KSS785) 750 × 750 16-D29 -S13-@100(KSS785) 16-D29 -S13-@100(KSS785)	700 x 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 700 x 800 18-D29 -S13-@100(KSS785) -S13-@100(KSS785) -S16-@150(KSS785) 700 x 800 18-D29 -S13-@100(KSS785)	700 × 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 700 × 700 16-D29 -S13-@100(KSS785) -S16-@150(KSS785) 700 × 700 16-D29 		
2階	町 直 筋 HOOP 単調無現要理合 部の規連理合 第の規連理合 一 平 X 断 一 一 X 断 一 一 X 断 一 一 X 断 一 一 本 、 、 、 、 、 、 、 、 、 、 、 、 、	700 × 700 18-D29 □-S13-@100(KSS785) □-S13-@100(KSS785)	700 × 700 14-D29 □-D13-@100 □-S13-@100(KSS785) 750 × 750 14-D29 □-S13-@100(KSS785) □-S13-@100(KSS785) 750 × 750 16-D29 □-S13-@100(KSS785)	700 x 800 18-D29 □-S13-@100(KSS785) □-S13-@120(KSS785) □-S13-@120(KSS785) □-S13-@100(KSS785) □-S16-@150(KSS785) □-S16-@100(KSS785) □-S16-@100(KSS785)	700 × 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 700 × 700 16-D29 -S13-@100(KSS785) 700 × 700 16-D29 -S16-@150(KSS785) 700 × 700 16-D29 -S16-@100(KSS785)		
2階	町 面 主 筋 HOOP 世頭甸廷要性合 部門補補項的 子 一→→X 町 面 主 筋 HOOP 中 一→ X 町 面 主 第 HOOP	700 × 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785) 18-D29 -S13-@100(KSS785) 18-D29 -S13-@100(KSS785) IB-D29 -S13-@100(KSS785) IB-D29 -S16-@150(KSS785) IB-D29 -S16-@150(KSS785) IB-D29 -S16-@100(KSS785) IB-D29 -S16-@100(KSS785) IB-D29 -S16-@100(KSS785)	700 × 700 14-D29 -D13-@100 -S13-@100(KSS785) 750 × 750 14-D29 -S13-@100(KSS785) -S13-@100(KSS785) 750 × 750 16-D29 -S13-@100(KSS785) 750 × 750 16-D29 -S13-@100(KSS785)	700 × 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 0 100 × 800 18-D29 -S13-@100(KSS785) III-S16-@100(KSS785) 700 × 800 18-D29 -S13-@100(KSS785) III-S16-@100(KSS785) 700 × 800 18-D29 -S16-@100(KSS785) III-S16-@100(KSS785) C1 C1	700 × 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 00 × 700 16-D29 -S13-@100(KSS785) III-S16-@150(KSS785) 700 × 700 16-D29 -S13-@100(KSS785) III-S16-@100(KSS785) 700 × 700 16-D29 -S16-@100(KSS785) C1 C2		
2階	町 直 筋 HOOP 単調無経費除合 調用経費除合 第 の 一 一 一 一 一 、 、 、 、 、 、 、 、 、 、 、 、 、	700 × 700 18-D29 □-S13-@100(KSS785) □-S13-@100(KSS785) 0 750 × 750 18-D29 □-S13-@100(KSS785) 0 0 0 -S13-@100(KSS785) 0 0 -S16-@150(KSS785) 0 0 0 0 0 0 0 0 0 0 0 0 0	700 × 700 14-D29 □-D13-@100 □-S13-@100(KSS785) 750 × 750 14-D29 □-S13-@100(KSS785) 750 × 750 14-D29 □-S13-@100(KSS785) 750 × 750 16-D29 □-S13-@100(KSS785)	700 × 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 700 × 800 18-D29 -S13-@100(KSS785) III-S16-@150(KSS785) 700 × 800 18-D29 -S13-@100(KSS785) III-S16-@150(KSS785) 700 × 800 18-D29 -S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785)	700 x 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 700 x 700 16-D29 -S13-@100(KSS785) -S16-@150(KSS785) 700 x 700 16-D29 -S16-@100(KSS785) C1C2		
2階	町 面 主 筋 HOOP 世週朝廷要特合 肥何補補強務 Y A → → X 断 面 主 筋 HOOP 世週朝廷要特合	700 × 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785) 18-D29 750 × 750 18-D29 -S13-@100(KSS785) Image: S16-@150(KSS785) 18-D29 750 × 750 18-D29 -S13-@100(KSS785) Image: S16-@150(KSS785) Image: S16-@100(KSS785) Image: S16-@100(KSS785) Image: S16-@100(KSS785) Image: S16-@100(KSS785)	700 × 700 14-D29 -D13-@100 -S13-@100(KSS785) 750 × 750 14-D29 -S13-@100(KSS785) -S13-@100(KSS785) 750 × 750 16-D29 -S13-@100(KSS785) C1 -C1 -C1 -C1	700 × 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 000 18-D29 -S13-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785)	700 × 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 00 × 700 16-D29 -S13-@100(KSS785) III-S16-@150(KSS785) 700 × 700 16-D29 -S13-@100(KSS785) III-S16-@150(KSS785) 700 × 700 16-D29 -S16-@100(KSS785) C1 -C2		
2階	町 面 主 筋 HOOP 世調無理理性合 部所補補強語 Y ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	700 × 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785) 18-D29 750 × 750 18-D29 -S13-@100(KSS785) 18-D29 -S13-@100(KSS785) 18-D29 -S13-@100(KSS785) 18-D29 -S13-@100(KSS785) 18-D29 -S13-@100(KSS785) 18-D29 -S13-@100(KSS785) 18-D29 -S16-@100(KSS785) 00-D29 19-S16-@100(KSS785) 00-D29 10-S16-@100(KSS785)	700 × 700 14-D29 -D13-@100 -S13-@100(KSS785) 750 × 750 14-D29 -S13-@100(KSS785) 750 × 750 14-D29 -S13-@100(KSS785) 750 × 750 16-D29 -S13-@100(KSS785)	700 × 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 000 18-D29 700 × 800 18-D29 -S13-@100(KSS785) III-S16-@150(KSS785) 700 × 800 18-D29 -S13-@100(KSS785) III-S16-@150(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785)	700 × 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 00 × 700 16-D29 -S13-@100(KSS785) III-S16-@100(KSS785) 700 × 700 16-D29 -S13-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785)		
2階	町 面 主 筋 HOOP 社調毎は変き合 肥料補補適所 Y A ● 一 X 断 面 主 が HOOP 4 調明は変き合 単 肥料補補適所 日 の い の い の し の い の し の い の し の い の し の い の し の い し の い し の い し の い し の い し の い し の い し の い し の い し の い し の い し の い し の い し い の い し の い し い い し い し い い し い し い し い し い い し い い し い し い し い し い の い し い し い し い し い し い し い し い し い し い し い い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い い し い し い し い し い し い し い し い い し い い い い い し い し い い い い い い い い い し い い い い い い い い い い い い い	700 × 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785) 750 × 750 18-D29 -S13-@100(KSS785) Image: S13-@100(KSS785) Image: S16-@150(KSS785) Image: S16-@100(KSS785) Image: S16-@100(KSS785) Image: S16-@100(KSS785) Image: S16-@100(KSS785) Image: S16-@100(KSS785)	700 × 700 14-D29 -D13-@100 -S13-@100(KSS785) 750 × 750 14-D29 -S13-@100(KSS785) -S13-@100(KSS785) 750 × 750 16-D29 -S13-@100(KSS785) C1C1C1	700 × 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 0 100 × 800 18-D29 -S13-@100(KSS785) III-S16-@100(KSS785) 0 18-D29 -S13-@100(KSS785) III-S16-@100(KSS785) 0 18-D29 -S16-@100(KSS785) 0 18-D29 -S16-@100(KSS785)	700 × 700 16-D29 -S13-@120(KSS785) -S13-@120(KSS785) 00 × 700 16-D29 -S13-@100(KSS785) III-S16-@150(KSS785) 700 × 700 16-D29 -S13-@100(KSS785) III-S16-@150(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) C1 C2		
2階	町 面 主 筋 HOOP 世調無理理性合 部所補補強語 Y ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	700 × 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785) 750 × 750 18-D29 -S13-@100(KSS785) Image: State of the stat	700 × 700 14-D29 -D13-@100 -S13-@100(KSS785) 750 × 750 14-D29 -S13-@100(KSS785) -S13-@100(KSS785) 750 × 750 16-D29 -S13-@100(KSS785) C1 -C1 -C1 -C1 -C1 -C1 -C1 -C1	700 × 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 700 × 800 18-D29 -S13-@100(KSS785) III-D19 -S13-@100(KSS785) III-S16-@150(KSS785) 700 × 800 18-D29 -S13-@100(KSS785) III-S16-@150(KSS785) III-S16-@100(KSS785) C1 C1 C3 C3	700 × 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 00 × 700 16-D29 -S13-@100(KSS785) III-S16-@100(KSS785) 700 × 700 16-D29 -S13-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785)		
2階	町 面 主 筋 HOOP 4週9022966 2000 Y 4週902976 第一 第一 第一 第一 第一 第一 第 第 第 第 第 第 第 第 第 第	700 × 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785) 750 × 750 18-D29 -S13-@100(KSS785) Image: S13-@100(KSS785) Image: S16-@150(KSS785) Image: S16-@100(KSS785) Image: S16-@100(KS5785) Image: S16-@100(KS5785) Image: S16-@100(KS5785) Image: S16-@100(KS5785) Image: S16-@100(KS5785) Image: S16-@100(KS5785) Image:	700 × 700 14-D29 -D13-@100 -S13-@100(KSS785) 750 × 750 14-D29 -S13-@100(KSS785) -S13-@100(KSS785) 750 × 750 16-D29 -S13-@100(KSS785) C1 -C1 -C1 -C3 -C3 -C3 -C3 -C3 -C3 -C3 -C3	700 × 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 000 18-D29 700 × 800 18-D29 -S13-@100(KSS785) III-S16-@100(KSS785) 100-S16-@100(KSS785) 100-S16-@100(KSS785) 100-S16-@100(KSS785) 100-S16-@100(KSS785) 100-S16-@100(KSS785) 000-S16-@100(KSS785) 000-S16-@100(KSS785) 000-S16-@100(KSS785) 000-S16-@100(KSS785)	700 × 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 00 × 700 16-D29 -S13-@100(KSS785) III-S13-@100(KSS785) III-S16-@150(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785)		
2階	町 面 主 筋 HOOP 型調報建業合 約74編編業務 Y 4 の→→X 断 面 主 筋 HOOP Y 3	700 × 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785) 750 × 750 18-D29 -S13-@100(KSS785) Image: State of the stat	700 × 700 14-D29 -D13-@100 -S13-@100(KSS785) 750 × 750 14-D29 -S13-@100(KSS785) 750 × 750 14-D29 -S13-@100(KSS785) 750 × 750 16-D29 -S13-@100(KSS785)	700 × 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 700 × 800 18-D29 -S13-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785)	700 × 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 00 × 700 16-D29 -S13-@100(KSS785) Image: State of the state		
2階	町 面 主 筋 HOOP 世題例建建現合 整例補補強語 Y A ● ■ X 断 面 主 筋 HOOP HOOP Y 4 単例 単題例建建現合 単一 X 断 面 主 筋 HOOP	700 × 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785) 750 × 750 18-D29 -S13-@100(KSS785) Image: S16-@150(KSS785) Image: S16-@100(KSS785)	700 × 700 14-D29 -D13-@100 -S13-@100(KSS785) 750 × 750 14-D29 -S13-@100(KSS785) -S13-@100(KSS785) 750 × 750 16-D29 -S13-@100(KSS785) C1 -S13-@100(KSS785) C1 -S13-@100(KSS785) C1 -S13-@100(KSS785) -S13-@100(KS5785) -S13-@10(KS5785)	700 × 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 000 × 800 18-D29 -S13-@100(KSS785) 000 × 800 18-D29 -S13-@100(KSS785) 000 × 800 18-D29 -S16-@150(KSS785) 000 × 800 18-D29 -S16-@100(KSS785)	700 × 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 00 × 700 16-D29 -S13-@100(KSS785) III-S16-@150(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785)		
2階	町 面 主 筋 HOOP 型調解延要性合 影響機構築的 Y 4 ● → → X 断 面 主 筋 HOOP Y 3 Y 2	700 × 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785) 750 × 750 18-D29 -S13-@100(KSS785) Image: State of the stat	700 × 700 14-D29 -D13-@100 -S13-@100(KSS785) 750 × 750 14-D29 -S13-@100(KSS785) 750 × 750 14-D29 -S13-@100(KSS785) 750 × 750 16-D29 -S13-@100(KSS785)	700 × 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 700 × 800 18-D29 -S13-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785)	700 × 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 00 × 700 16-D29 -S13-@100(KSS785) Image: State of the state		
2階	町 面 主 筋 HOOP 日の回見変き合 * ●	700 × 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785) 750 × 750 18-D29 -S13-@100(KSS785) IB-D29 -S16-@150(KSS785) IB-S16-@100(KSS785) IB-S16-@100(KSS785) IB-S16-@100(KSS785) IB-S16-@100(KSS785) IB-S16-@100(KSS785) IB-S16-@100(KSS785) IB-S16-@100(KSS785) IB-S16-@100(KSS785)	700 × 700 14-D29 □-D13-@100 □-S13-@100(KSS785) 750 × 750 14-D29 □-S13-@100(KSS785) □-S13-@100(KSS785) □-S13-@150(KSS785) 0 -S13-@100(KSS785) 0 -S13-@100(KSS785) -S13-@100(KS5785) -S13-@100(KS5785) -S13-@100(KS5785) -S13-@100(KS5785) -S13-@100(KS5785) -S13-@100(KS5785) -S13-@1	700 × 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 000 × 800 18-D29 700 × 800 18-D29 -S13-@100(KSS785) III-S13-@100(KSS785) III-S16-@150(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785)	700 × 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 100 × 700 16-D29 -S13-@100(KSS785) I-S13-@100(KSS785) I-S16-@150(KSS785) 100 × 700 16-D29 100 × 700 16-D29 II-S16-@100(KSS785) II-S16-@100(KSS785) II-S16-@100(KSS785) II-S16-@100(KSS785)		
2階	町 面 主 筋 HOOP 世頭無遅葉合 影叭補補強筋 Y 4 一→→X 町 面 主 筋 HOOP 学 4 一→→X 町 面 主 筋 HOOP 7 3 	700 × 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785) 750 × 750 18-D29 -S13-@100(KSS785) Image: State of the stat	700 × 700 14-D29 -D13-@100 -S13-@100(KSS785) 750 × 750 14-D29 -S13-@100(KSS785) -S13-@100(KSS785) 750 × 750 16-D29 -S13-@100(KSS785) C1 C1 C1 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3	700 × 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 100 × 800 18-D29 -S13-@100(KSS785) III-D129 -S13-@100(KSS785) III-S16-@150(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785)	700 × 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 00 × 700 16-D29 -S13-@100(KSS785) Image: State of the state		
2階	町 面 主 筋 HOOP 日の日本 中国 日本 日本	700 × 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785) 750 × 750 18-D29 -S13-@100(KSS785) #-S13-@100(KSS785) #-S16-@150(KSS785) 750 × 750 20-D29 #-S16-@100(KSS785) (C2 C1 C2 C1	700 × 700 14-D29 □-D13-@100 -S13-@100(KSS785) 750 × 750 14-D29 □-S13-@100(KSS785) □-S13-@100(KSS785) 0.513-@150(KSS785) 750 × 750 16-D29 □-S13-@100(KSS785) C1 C1 C1 C1 C1 C1 C1 C1 C1	700 × 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 00 × 800 18-D29 -S13-@120(KSS785) 00 × 800 18-D29 -S13-@100(KSS785) III-S16-@150(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) C1 C1 -C3 C3 -C1 C1	700 × 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 700 × 700 16-D29 -S16-@150(KSS785) 16-D29 10-S16-@100(KSS785) C1 C2 C3 C4 C1 C2 C1 C2		
2階	时 面 主 筋 HOOP 型調和建築合 型明和建築合 型明和建築合 NOOP 4週の建築合 中子X 断 面 主 筋 HOOP 4週の建築合 4週の単構業 第 第 日 文 4 週の 2 月 (2 月 (2 月 (2 月 (2 月 (3 月 (2 月 (3 月 (3 月 (3 月 (3 月 (3 月 (3 月 (3 月 (3 月 (3 月 (3 月 (3 月 (3 月 (3 月 (3 月) (3 日) (3 月) (3 月) (3 月) (3 月) (3 月) (3 月) (3 月) (3 月) (3 月) (3 月) (3 月) (3) () (3) () () (3) () ()	700 × 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785) 750 × 750 18-D29 -S13-@100(KSS785) Image: S13-@100(KSS785) Image: S16-@150(KSS785) 750 × 750 20-D29 Image: S16-@100(KSS785) Image: S16-@100(KS5785) Image: S16-@100(KS5785) Image: S16-@100(KS5785) Image: S16-@100(KS5785) Image: S16-@100(KS5785) <th>700 × 700 14-D29 -D13-@100 -S13-@100(KSS785) 750 × 750 14-D29 -S13-@100(KSS785) -S13-@100(KSS785) 750 × 750 16-D29 -S13-@100(KSS785) C1 -C1 -C1 -C1 -C1 -C1 -C1 -C</th> <th>700 × 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) </th> <th>700 × 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 00 × 700 16-D29 -S13-@100(KSS785) III-S16-@150(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785)</th>	700 × 700 14-D29 -D13-@100 -S13-@100(KSS785) 750 × 750 14-D29 -S13-@100(KSS785) -S13-@100(KSS785) 750 × 750 16-D29 -S13-@100(KSS785) C1 -C1 -C1 -C1 -C1 -C1 -C1 -C	700 × 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785)	700 × 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 00 × 700 16-D29 -S13-@100(KSS785) III-S16-@150(KSS785) III-S16-@100(KSS785)		
2階	町 直 筋 HOOP 世調無理理性を 部の理理性を 部の理想性で 部の理想性で か 上 筋 HOOP 1 型の理想性で か 上 の い 一 一 、 、 、 、 、 、 、 、 、 、 、 、 、	700 × 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785) 750 × 750 18-D29 -S13-@100(KSS785) Image: State of the stat	700 × 700 14-D29 -D13-@100 -S13-@100(KSS785) 750 × 750 14-D29 -S13-@100(KSS785) -S13-@100(KSS785) 750 × 750 16-D29 -S13-@100(KSS785) C1 -C1 -C1 -C1 -C1 -C1 -C1 -C1	700 × 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 700 × 800 18-D29 -S13-@100(KSS785) III-D19 700 × 800 18-D29 -S13-@100(KSS785) III-S16-@150(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785)	700 × 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 700 × 700 16-D29 -S13-@100(KSS785) Image: State of the stat		
2階	町 面 主 筋 HOOP 日の回転要用合 * ●	700 × 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785) 750 × 750 18-D29 -S13-@100(KSS785) Image: S16-@150(KSS785) Image: S16-@100(KSS785) Image: S16-@100(KS5785) Image:	700 × 700 14-D29 -D13-@100 -S13-@100(KSS785) 750 × 750 14-D29 -S13-@100(KSS785) -S13-@100(KSS785) 750 × 750 16-D29 -S13-@100(KSS785) C1 -C1 -C1 -C1 -C1 -C1 -C1 -C	700 × 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 000 × 800 18-D29 -S13-@100(KSS785) 000 × 800 18-D29 -S13-@100(KSS785) 000 × 800 18-D29 -S16-@100(KSS785) 000 × 800 18-D29 -S16-@100(KSS785) 000 × 800 18-D29 -S16-@100(KSS785) 000 × 800 18-D29 -C1 C1 -C1 C1 -C1 C1 -C1 C1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	700 × 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 100 × 700 16-D29 -S13-@100(KSS785) III-S16-@150(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785)		
2階	町 面 主 筋 HOOP 世調希廷登特合 ア ▲ ア ▲ 第 前 面 主 筋 HOOP 七調希廷登特合 平 ▲ ア ▲ 丁 面 主 筋 HOOP 七調希廷登特 ア ▲ ● Y ▲ ● Y ▲ ● Y ▲ ● Y ▲ ● Y ▲ ● Y ▲ ● Y ▲ ● Y ▲ ● Y ▲ ● Y ▲ ● Y ▲ ● Y ● Y ● Y ● Y ● Y ●	700 × 700 18-D29 -S13-@100(KSS785) -S13-@100(KSS785) 750 × 750 18-D29 -S13-@100(KSS785) Image: State of the stat	700 × 700 14-D29 -D13-@100 -S13-@100(KSS785) 750 × 750 14-D29 -S13-@100(KSS785) -S13-@100(KSS785) 750 × 750 16-D29 -S13-@100(KSS785) C1 C1 C1 C1 C1 C1 C1 C1 C1	700 × 800 18-D29 -S13-@100(KSS785) -S13-@120(KSS785) 100 × 800 18-D29 -S13-@100(KSS785) III-S16-@100(KSS785) IIII-S16-@100(KSS785) IIII-S16-@100(KSS785) IIII-S16-@100(KSS785) IIII-S16-@100(KSS785) IIII-S16-@100(KSS785) IIII-S16-@100(KSS785) IIII-S16-@100(KSS785) IIII-S16-@100(KSS785) IIII-S16-@100(KSS785) IIIII-S16-@100(KSS785) IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	700 × 700 16-D29 -S13-@100(KSS785) -S13-@120(KSS785) 00 × 700 16-D29 -S13-@100(KSS785) III-S16-@150(KSS785) III-S16-@100(KSS785) III-S16-@100(KSS785) C1 C2 C3 C4 C1 C2 C3 C4		

KEYPLAN 図 3.1.76 柱断面リスト (RC モデル、RC+CLT モデル)

		/ * \				-	<u>^</u>	
符号	G1	(A)		G2		G	3	
位置	端部	中央	外端	中央	内端	端 部	中央	
	000	0000	p o H o	- 4 ° °	00400	0000	0000	
	_,,			_ [_,,_	· · · · · ·		
R階	ممم	ممم	ام ال	مطلق	<u> </u>	<u> </u>	مـمـم	
	×() + * * + + + + + + + + + + + + + + + +	+ = +	※RG2外端部の梁主筋(の柱内への水平		※RG3外端部の梁主筋の柱内への水平		
Not T	※()内の <u></u> 叙値はGTA	を 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	飲込み長さは柱せいの	20.85倍以上とする。	KLOTRCIATE COOL	.0010 MTC 9 %		
断面	(550)50	JU x 600	4-025	550 X 600	550 x	(600		
<u>上肋</u> 下篮	4-D25	4-D25	4-025	4-D25	4-D25	4-D20 4-D25	4-D25	
S T	-+ D25	3-@200	4 020		4 020		-@200	
腹筋	2-1	D10		2-D10		2-0	010	
カットオフ長	-	-	-	-	1200	-	-	
	p-0-0-9	p 0 0 0 9	b a H a d	popoq	<u>6 0 9 0 9</u>	b o H o d	b.a.H.a.d	
6階								
	6000	60000	60800	bo Hod	60804	<u>bollod</u>	0000	
断面	550	x 650		600 × 650		500 ×	c 650	
上筋	5-D25	5-D25	5-D25	5-D25	5-D25	5-D25	5-D25	
下筋	5-D25	5-D25	5-D25	5-D25	5-D25	5-D25	5-D25	
S T	□-D1	3-@100		D13-@100		D1:	3-@100	
腹筋	2-1	D10		2-D10		2-L	010	
加水力長	_	-	-	-	-	_	-	
5階		, ,	·			e	e	
う P自								
					6.6.8.8.0			
新面	600	x 700		600 x 750		600 x	< 700	
上筋	6-D25	6-D25	6-D25	6-D25	6-D25	5-D25	5-D25	
下筋	6-D25	6-D25	6-D25	6-D25	6-D25	5-D25	5-D25	
ST	□-D1:	3-@100				D1:	3-@100	
腹筋	2-1	D10		2-D10		2-0	010	
カットオフ長	-	-	-	-	-	-	-	
	poor og						pohbod	
A 171:1:								
4階								
	لفمظمما		b o H H o d	b o H H o d	<u>له م الا م م</u>	فمقاطمط	لفصططعيط	
	600	× 750		600 × 750		600 x	/ 750	
断面	600 (6+2)-D25	x 750	(6+1)-D25	600 x 750	(6+1)-D25	600 ×	< 750 6-D25	
断 面 上 筋 下 筋	600 (6+2)-D25 (6+2)-D25	x 750 6-D25 6-D25	(6+1)-D25 (6+1)-D25	600 x 750 6-D25 6-D25	(6+1)-D25 (6+1)-D25	600 × 6-D25 6-D25	< 750 6-D25 6-D25	
断 面 上 筋 下 筋 S T	600 (6+2)-D25 (6+2)-D25 (6+2)-D25	x 750 6-D25 6-D25 13-@100	(6+1)-D25 (6+1)-D25	600 x 750 6−D25 6−D25 1110 −D13-@100	(6+1)-D25 (6+1)-D25	600 > 6-D25 6-D25 Ⅲ-D1:	< 750 6-D25 6-D25 3-@100	
断 面 上 筋 S T 腹	600 (6+2)-D25 (6+2)-D25 D1 D1 2-D1	x 750 6-D25 6-D25 13-@100 D10	(6+1)-D25 (6+1)-D25	600 x 750 6-D25 6-D25 []]-D13-@100 2-D10	(6+1)-D25 (6+1)-D25	600 × 6-D25 6-D25 ∭-D1: 2-D	< 750 6-D25 6-D25 3-@100 010	
断 面 上 筋 下 筋 S T 腹 筋 カットオフ長	600 (6+2)-D25 (6+2)-D25 D 2-1 1200	x 750 6-D25 6-D25 13-@100 D10 -	(6+1)-D25 (6+1)-D25 1000	600 x 750 6-D25 6-D25 Ⅲ-D13-@100 2-D10 -	(6+1)-D25 (6+1)-D25 1000	600 × 6−D25 6−D25 ∭−D1: 2−C −	< 750 6-D25 6-D25 3-@100 010 -	
断 面 上 筋 S T 腹 筋 カットオフ長	600 (6+2)-D25 (6+2)-D25 D1 2-1 1200	x 750 6-D25 6-D25 13-@100 D10 -	(6+1)-D25 (6+1)-D25 1000	600 x 750 6-D25 6-D25 Ⅲ-D13-@100 2-D10 -	(6+1)-D25 (6+1)-D25 1000	600 × 6-D25 6-D25 ∭D1: 2-C -		
断面 上筋 下筋 ST 腹筋 かットオフ長	600 (6+2)-D25 (6+2)-D25 	x 750 6-D25 13-@100 D10 -	(6+1)-D25 (6+1)-D25 1000	600 x 750 6-D25 6-D25 []]-D13-@100 2-D10 -	(6+1)-D25 (6+1)-D25 1000	600 × 6-D25 6-D25 	د 750 6-D25 3-@100 010 -	
断 面 上 筋 下 筋 夏 筋 かパオフ長	600 (6+2)-D25 (6+2)-D25 -D1 -D1 2-1 1200 	x 750 6-D25 6-D25 13-@100 D10 -	(6+1)-D25 (6+1)-D25 1000	600 x 750 6-D25 6-D25 (III -D13-@100 2-D10 -	(6+1)-D25 (6+1)-D25	600 × 6-D25 6-D25 	6 750 6-D25 3-@100 - - -	
断面 上筋 下筋 了 腹筋 かトオフ長 3階	600 (6+2)-D25 (6+2)-D25 (6+2)-D25 2-1 1200	x 750 6-D25 13-@100 D10 -	(6+1)-D25 (6+1)-D25 1000	600 x 750 6-D25 6-D25 	(6+1)-D25 (6+1)-D25	600 × 6-D25 6-D25 		
断面 上筋 下筋 ST 腹筋 かパオフ長 3階	600 (6+2)-D25 (6+2)-D25 (6+2)-D25 2-1 1200	x 750 6-D25 13-@100 D10 -	(6+1)-D25 (6+1)-D25 1000	600 x 750 6-D25 6-D25 Ⅲ-D13-@100 2-D10 -	(6+1)-D25 (6+1)-D25	600 × 6-D25 6-D25 	<pre></pre>	
断面 上筋 下筋 ST 腹筋 カットオフ長 3階	600 (6+2)-D25 (6+2)-D25 	x 750 6-D25 13-@100 D10 -	(6+1)-D25 (6+1)-D25 1000	600 x 750 6-D25 6-D25 Ⅲ-D13-@100 2-D10 -	(6+1)-D25 (6+1)-D25 1000	600 × 6-D25 6-D25 		
断面 上筋 下筋 ST 腹筋 かパオフ長 3階	600 (6+2)-D25 (6+2)-D25 	x 750 6-D25 6-D25 13-@100 D10 -	(6+1)-D25 (6+1)-D25 1000	600 x 750 6-D25 6-D25 ⊡-D13-@100 2-D10 -	(6+1)-D25 (6+1)-D25		<pre></pre>	
断面 上筋 S T 腹筋 かパフ長 3階	600 (6+2)-D25 (6+2)-D25 	x 750 6-D25 6-D25 13-@100 D10 - x 800 6-D25	(6+1)-D25 (6+1)-D25 1000	600 × 750 6-D25 6-D25 ⊡-D13-@100 2-D10 - - 	(6+1)-D25 (6+1)-D25	600 × 6-D25 6-D25 - - - - - - - - - - - - - - - - - - -	<pre></pre>	
断面 上筋 下筋 S T 腹筋 かいわみ る階 断面 上筋 下 下 筋 た 方 、 ち た	600 (6+2)-D25 (6+2)-D25 	x 750 6-D25 6-D25 13-@100 D10 - x 800 6-D25 6-D25	(6+1)-D25 (6+1)-D25 1000 (6+1)-D25 (6+1)-D25 (6+1)-D25	600 × 750 6-D25 6-D25 ⊡ -D13-@100 2-D10 - - 600 × 800 6-D25 6-D25 6-D25	(6+1)-D25 (6+1)-D25	600 × 6-D25 6-D25 	6 750 6 - D25 6 - D25 3 - @ 100 - -	
断面 上筋 下筋 ST 腹筋 かパオフ長 3階 断直 上筋 下筋 ST	600 (6+2)-D25 (6+2)-D25 	x 750 6-D25 6-D25 13-@100 D10 - x 800 6-D25 6-D25 3-@100	(6+1)-D25 (6+1)-D25 1000 (6+1)-D25 (6+1)-D25 (6+1)-D25	600 x 750 6-D25 6-D25 -D13-@100 2-D10 - - 600 x 800 6-D25 6-D25 (11-D13-@100	(6+1)-D25 (6+1)-D25	600 × 6-D25 6-D25 - - - - - - - - - - - - - - - - - - -	 	
断面 上筋 下ST 腹筋 かパオフ長 3階 断筋 上防筋 下方 方 方	600 (6+2)-D25 (6+2)-D25 -D1 2-1 1200 (6+2)-D25 (6+2)-D25 (6+2)-D25 -D1 2-1 -D1 -D1 -D1 -D1 -D1 -D1 -D1 -	x 750 6-D25 13-@100 D10 - x 800 6-D25 6-D25 3-@100 D10 D10	(6+1)-D25 (6+1)-D25 1000 (6+1)-D25 (6+1)-D25 (6+1)-D25	600 x 750 6-D25 6-D25 (III -D13-@100 2-D10 - - 600 x 800 6-D25 6-D25 6-D25 (III -D13-@100 2-D10	(6+1)-D25 (6+1)-D25	600 × 6-D25 6-D25 		
断面上筋 下筋 ST 腹筋 かパオフ長 3階 直筋 下下 方がオフ長 方がオフ長	600 (6+2)-D25 (6+2)-D25 	x 750 6-D25 13-@100 D10 - x 800 6-D25 6-D25 3-@100 D10 -	(6+1)-D25 (6+1)-D25 1000 (6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25	600 x 750 6-D25 6-D25 ()-D13-@100 2-D10 - - 600 x 800 6-D25 6-D25 6-D25 6-D25 ()-D13-@100 2-D10 - -	(6+1)-D25 (6+1)-D25 1000 (6+1)-D25 (6+1)-D25 (6+1)-D25	600 × 6-D25 6-D25 		
断面 上筋 下筋 ST 腹筋 かパオフ長 3階 上筋 下筋 支防 方がパオフ長 上筋 下筋 下筋 下筋 ア 酸防 直 上筋 下筋 ST 腹筋 かパオフ長	600 (6+2)-D25 (6+2)-D25 D1 2-1 1200 (6+2)-D25 (6+2)-D25 (6+2)-D25 (6+2)-D25 (6+2)-D25 	x 750 6-D25 13-@100 D10 - x 800 6-D25 6-D25 3-@100 D10 -	(6+1)-D25 (6+1)-D25 1000 (6+1)-D25 (6+1)-D25 (6+1)-D25 1000	600 × 750 6-D25 6-D25 	(6+1)-D25 (6+1)-D25	600 × 6-D25 6-D25 - - - - - - - - - - - - - - - - - - -	6 750 6 -D25 3 - 010 - - -	
断面 上筋 下筋 ST 腹筋 かいわつ長 3階 断面 上筋 方からた 方からた 上筋 方からた 方方 方方 方方 3階 面 上筋 下筋 ST 腹方 方方 方方 原防 丁方 原防 丁方 原防 丁方 原防 丁方 原防 丁方 原防 丁方 丁方 丁方 丁方	600 (6+2)-D25 (6+2)-D25 	x 750 6-D25 13-@100 D10 - x 800 x 800 6-D25 6-D25 3-@100 D10 - -	(6+1)-D25 (6+1)-D25 1000 (6+1)-D25 (6+1)-D25 (6+1)-D25 1000	600 x 750 6-D25 6-D25 ()-D13-@100 2-D10 - - 600 x 800 6-D25 6-D25 6-D25 ()-D13-@100 2-D10 - - - - - - - - - - - - -	(6+1)-D25 (6+1)-D25 1000 (6+1)-D25 (6+1)-D25 1000	600 × 6-D25 6-D25 	 с 750 6-D25 6-D25 3-@100 - /ul>	
断面 上筋 下筋 S 加水力 3階 断面 上下筋 下筋 下筋 下筋 下筋 下筋 下筋 下筋 下筋 下筋 支 加水力	600 (6+2)-D25 (6+2)-D25 	x 750 6-D25 6-D25 13-@100 D10 - x 800 6-D25 6-D25 3-@100 D10 - -	(6+1)-D25 (6+1)-D25 1000 (6+1)-D25 (6+1)-D25 (6+1)-D25 1000	600 × 750 6-D25 6-D25 () -D13-@100 2-D10 - - - 600 × 800 6-D25 6-D25 () -D13-@100 2-D10 - - - - - - - - - - - - -	(6+1)-D25 (6+1)-D25 1000 (6+1)-D25 (6+1)-D25 (6+1)-D25	600 × 6-D25 6-D25 - - - - - - - - - - - - - - - - - - -		
断面 上筋 下筋 ST 腹筋 カットオフ長 3階 画 上防 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 上 方 方 方 方 方 方 度 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方	600 (6+2)-D25 (6+2)-D25 (6+2)-D25 (6+2)-D25 (6+2)-D25 (6+2)-D25 (6+2)-D25 (6+2)-D25	x 750 6-D25 13-@100 D10 - x 800 6-D25 6-D25 3-@100 D10 - -	(6+1)-D25 (6+1)-D25 1000 (6+1)-D25 (6+1)-D25 (6+1)-D25 1000	600 x 750 6-D25 6-D25 ()-D13-@100 2-D10 	(6+1)-D25 (6+1)-D25 1000 (6+1)-D25 (6+1)-D25 (6+1)-D25	600 × 6-D25 6-D25 - - - - - - - - - - - - - - - - - - -	a 750 6-D25 6-D25 3-@100 010 -	
断面 上筋 下筋 ST 腹筋 かいわつ長 3階 画筋 下筋 ST 腹筋 かいわつ長 3階 国筋 下筋 ST 原筋 水りいわった 2階	600 (6+2)-D25 (6+2)-	x 750 6-D25 13-@100 D10 - x 800 6-D25 6-D25 3-@100 D10 - x 800 6-D25 6-D25 13-@100 - - - - - - - - - - - - -	(6+1)-D25 (6+1)-D25 1000 (6+1)-D25 (6+1)-D25 (6+1)-D25	600 × 750 6-D25 6-D25 ()-D13-@100 2-D10 	(6+1)-D25 (6+1)-D25 1000 (6+1)-D25 (6+1)-D25 (6+1)-D25	600 × 6-D25 6-D25 		
断面 上筋 下筋 ST 腹筋 かいわり長 3階 直筋 下下筋 2階	600 (6+2)-D25 (6+2)-D25 	x 750 6-D25 13-@100 D10 - x 800 6-D25 6-D25 6-D25 3-@100 D10 - ()	(6+1)-D25 (6+1)-D25 1000 (6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25	600 x 750 6-D25 6-D25 ()-D13-@100 2-D10 - 600 x 800 6-D25 6-D25 6-D25 ()-D13-@100 2-D10 - - ()-D13-@100 2-D10 - -	(6+1)-D25 (6+1)-D25 1000 	600 × 6-D25 6-D25 		
断面 面 下筋 下 下 所 方 下 方 方 方 方 方 方 方 方 方 万	600 (6+2)-D25 (6+2)-D25 1200 (6+2)-D25 (6+2)-D25 (6+2)-D25 (6+2)-D25 (6+2)-D25 	x 750 6-D25 13-@100 D10 - x 800 6-D25 6-D25 3-@100 D10 - - - - - - - - - - - - -	(6+1)-D25 (6+1)-D25 1000 (6+1)-D25 (6+1)-D25 (6+1)-D25 1000	600 x 750 6-D25 6-D25 ()-D13-@100 2-D10 - - - - - - - - - - - - -	(6+1)-D25 (6+1)-D25 1000 (6+1)-D25 (6+1)-D25 (6+1)-D25	600 × 6-D25 6-D25 		
断面 上 防 下 筋 S 丁 腹筋 かパオフ長 3階 面筋 上 下 筋 方がパオフ長 2階 断面	600 (6+2)-D25 (6+2)-D25 	x 750 6-D25 6-D25 13-@100 D10 - x 800 6-D25 6-D25 3-@100 D10 - x 800 6-D25 x 800 6-D25 3-@100 D10 - x 800 x 800	(6+1)-D25 (6+1)-D25 1000 (6+1)-D25 (6+1)-D25 (6+1)-D25 1000	600 x 750 6-D25 6-D25 ()-D13-@100 2-D10 	(6+1)-D25 (6+1)-D25 1000 (6+1)-D25 (6+1)-D25 (6+1)-D25	600 × 6-D25 6-D25 - - - - - - - - - - - - - - - - - - -		
断面上筋 下筋 ST 腹筋 かパオフ長 3階 面上筋 下下、方 丁 腹方の 方がパオフ長 3階 面上筋 下、方 方 3階 面上 方 方 方 方 丁 原 町 面上 丁 面 上 丁	600 (6+2)-D25 (6+2)-D25 (6+2)-D25 (6+2)-D25 (6+2)-D25 (6+2)-D25 (6+2)-D25 (6+2)-D25	x 750 6-D25 6-D25 13-@100 D10 - x 800 6-D25 6-D25 3-@100 D10 - x 800 6-D25 6-D25 3-@100 D10 - x 800 6-D25 6-	(6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25	600 x 750 6-D25 6-D25 ()-D13-@100 2-D10 - - - - - - - - - - - - -	(6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25 1000	600 × 6-D25 6-D25 - - - - - - - - - - - - -	 	
断面 上防 下ST 服 方、ST 服 方、ST 服 方、ST 服 方、ST 服 方、ST 服 方、ST 服 面筋 所 方、ST 服 面筋 所 加いれていたいたいたいたいたいたいたいたいたいたいたいたいたいたいたいたいたいたい	600 (6+2)-D25 (6+2)-D25 (6+2)-D25 (6+2)-D25 (6+2)-D25 (6+2)-D25 (6+2)-D25 (6+2)-D25 (6+2)-D25 (6+2)-D25 (6+2)-D25 (6+2)-D25	x 750 6-D25 6-D25 13-@100 D10 - x 800 6-D25 6-D25 3-@100 D10 - x 800 6-D25 6-D25 3-@100 D10 x 800 6-D25 13-@100 D10 - x 800 6-D25 13-@100 0 0 0 0 0 0 0 0 0 0 0 0	(6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25	600 × 750 6-D25 6-D25 () -D13-@100 2-D10 - - 600 × 800 6-D25 () -D13-@100 2-D10 - - 600 × 800 6-D25 () -D13-@100 2-D10 - - - - - - - - - - - - -	(6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25	600 × 6-D25 6-D25 - - - - - - - - - - - - - - - - - - -		
断面 上 筋 下ST 服 筋 方がわり、 3 町 動かわり、 3 町 動かわり、 3 町 動かわり、 3 町 動かわり、 3 町 動かり、 1 万 方 5 万 方 5 万 動かり、 2 町 面筋筋 丁 5 方 5 万 方 5 万	600 (6+2)-D25 (6+2)-	x 750 6-D25 6-D25 13-@100 D10 - x 800 6-D25 6-D25 3-@100 D10 - x 800 6-D25 6-D25 13-@100 D10 - x 800 0 0 0 0 0 0 0 0 0 0 0 0	(6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25	600 × 750 6-D25 6-D25 ()-D13-@100 2-D10 - - 600 × 800 6-D25 ()-D13-@100 2-D10 - - 600 × 800 6-D25 ()-D13-@100 2-D10 - - - - - - - - - - - - -	(6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25 (6+1)-D25 5)	600 × 6-D25 6-D25 - - - - - - - - - - - - - - - - - - -	 	

大沙浜市リフト

図 3.1.77 大はり断面リスト (RC モデル、RC+CLT モデル)

図 3.1.77 大はり断面リスト(RC モデル、RC+CLT モデル)

スラフリスト	•						
竹旦	カノゴ	マニブロ	唐 墨	短辺方向	長辺方向	洪 李	
ান স্ব	312	ヘワノ序	177 1	全断面	全断面	1/fl 75	
S0	А	120		D10, D13-@200	D10-@200	シングルメッシュ	
0.1		000	上筋	D10, D13-@200	D10-@200	た[*]つ[*]II. かいちょー	
51	A	200	下筋	D10-@200	D10-@200	37102921	
<u></u>		150	上筋	D10, D13-@200	D10-@200	<i>h</i> *⊐*⊪ √w3	
52	A	150	下筋	D10-@200	D10-@200	37102921	
0.01		190	上筋	D13-@150	D10-@200	5*7*11 Just	
031	A	160	下筋	D10, D13-@150	D10-@200	メノルメッシュ	
000		000	上筋	D13-@100	D10-@200	<i>b</i> *⊐*∥ <i>s</i> lass?	
0.52	A	200	下筋	D10, D13-@100	D10-@200	メノルメッシュ	
000		200	上筋	D10-@150	D10-@200	5°⊐°∥ atout	
033	A	200	下筋	D10-@150	D10-@200	メノルメッシュ	

ピットスラブリスト

符号	カノゴ	っニブ回	唐 墨	短辺方向	長辺方向	进 书
	212	ヘラノ序	卫直	全断面	全断面	備考
F01		250	上筋	D13 -@200	D13 -@200	エエマト
F91	A	250	下筋	D13 -@200	D13 -@200	モナノミ

*RC+CLT モデルの CLT スラブに関しては構造的な検証を行っていないので割愛している 図 3.1.78 スラブリスト (RC モデル、RC+CLT モデル)

壁リスト 特記なき限り 1. 巾止筋 D10-@1000以内とする。

図 3.1.79 壁リスト (RC モデル、RC+CLT モデル)

壁リスト

符 号	強度等級	樹種	壁厚	ラミナ幅
CLT1	S60-7-7	スギ	210	122
CLT2	S60-5-5	スギ	150	122

図 3.1.80 壁リスト (RC+CLT モデル)

図 3.1.81 滑り止めリスト (RC+CLT モデル、X2~X7 構面)

図 3.1.82 滑り止めリスト (RC+CLT モデル、X1、X8、Y1、Y3 構面)

(c) 構造設計の方針

本検討では、3.1.4 を参考に、RC 柱と CLT 袖壁の軸剛性を適切に評価するために、MS 要素が使用 可能な SNAP (構造システム社)による数値解析を行った。以下に、構造設計における留意事項を示 す。

- RCモデル、RC+CLTモデルのいずれについても、各部材は立体でモデル化した。RC+CLTモデルでは、CLT 袖壁が圧縮軸力を負担するため、RCモデルと比較して、RC 柱に作用する軸力が低下する傾向があるため、全体崩壊形の形成やせん断の保証設計に配慮する必要があるが、本設計例では、RC 柱に MSモデルを用いた立体モデルとすることで、X 方向の加力時に Y 方向の大はりによる抑え効果が働いたため、Y1、Y3 構面の RC 柱に作用する軸力の低減が抑えられている。
- RC+CLT モデルでは、RC ラーメンの施工後に CLT 袖壁を挿入することを想定しているため、
 CLT 袖壁には建築物の自重による長期荷重は作用しないが、今回の検討ではプログラムの制約から長期荷重による応力が CLT 袖壁に作用している。その結果、本設計事例では、地震時に CLT 袖壁が負担するせん断力や曲げモーメントが増大している可能性があるが、本検討では、長期荷重による影響が建築物全体の挙動に及ぼす影響が十分に小さいことを確認した上で、CLT 袖壁への
 長期荷重の作用を許容することとした。
- ・ RC+CLT モデルでは、RC と CLT の複合床が採用されているが、RC 部分にはトッピングコンク リートだけでなく、床スラブとしての最低限の配筋もなされているものと考え、十分な面内剛性 が確保され、剛床仮定が成立するものと仮定した。
- RC+CLT モデルでは、X、Y 方向のいずれについても、崩壊機構が形成された後も、変形の増大に伴って水平荷重が増加する傾向が見られた。そこで、RC+CLT モデルについては、いずれかの階の層間変形角が 1/33rad と十分に大きな変形に到達するまで押切載荷を行い、その時点の応力を D_s算定時の応力として、保証設計を行うこととした。なお、RC モデルについては、全体崩壊形の形成が確認されたため、いずれかの階の層間変形角が 1/50rad に到達した時点で、その時点の応力を D_s算定時の応力として、保証設計を行っている。

(その他の留意事項)

- 本設計例では、基礎形式を直接基礎と仮定している。モデル化では、柱脚下の支点をピン支持と し、浮き上がりは考慮していない。なお、仮定した断面を用いて基礎はりのモデル化は行ってい るものの、本来は必要な接地圧を考慮した応力算定等は実施していないため、詳細な検討が別途 必要となる。
- 屋外の鉄骨階段に作用する地震力は、建築物本体が負担するものと仮定している。

(d) モデル化の方法

図 3.1.83 に RC+CLT モデルにおける大はりと CLT 袖壁の解析モデルの概要を示す。CLT 袖壁は 1 本の線材としてモデル化したが、CLT 袖壁-RC 基礎はり、大はり間の水平接合部は、支圧特性を模 擬した 4 本の軸ばねと 1 本のせん断ばねでモデル化した。これは、3.1.4 で示した図 3.1.23 の簡易モデ ルと図 3.1.25 の詳細モデルの中間的な手法によるモデル化(混合モデル)による。軸ばねの位置は CLT 袖壁の水平断面を 4 分割した重心位置とし、はり材に節点を設けて接続した。CLT 袖壁-RC 間の鉛 直接合部については、本設計例では接合金物は設置しておらず、特別なモデル化も行っていない。な お、RC 柱はり接合部に関しては、剛域を設定し、その長さはフェイスから部材せいの 1/4 だけ内側に 入った位置までとした。

軸ばね1本あたりの支圧耐力と支圧剛性は、3.1.4 (e)に記載のBタイプの接合方法の記載を参考に、 表 3.1.15 に示すように計算した。なお、ここでは安全側の配慮として、CLT 袖壁の座屈長さんを各階 の内法高さ h₀と等しいものとしているが、3.1.2 で示した架構実験と同様に、両端固定の状態を想定し て、各階の内法高さの半分(0.5h₀)としても問題ないものと考えられる。

表 3.1.15 CLT 袖壁の水平接合部の軸ばねの支圧耐力と支圧剛性(RC+CLT モデル) (a) X 方向

	板厚	せい	階高	はりせい	座屈長さ				圧縮強度	座屈強度	軸ばね1本あたりの	CLTの	軸ばね1本あたりの
階	t _w	D_{w}	h	D _b	Ι _b	i	$\lambda = l_b/i$	低減率	_t F _c	$_{\rm tv}{\sf F}_{\rm c}$	支圧耐力 wpu	支圧剛性k _e	支圧剛性kw
	mm	mm	mm	mm	mm				N/mm^2	N/mm^2	kN	N/mm ³	kN/mm
6	150	600	2800	600									
5	150	600	2850	650	1	43.4	47.3	0.827	9.72	8.04	181		351
4	150	600	2900	700	2050							15.6	
3	210	600	2950	750	2050							15.0	
2	210	600	3000	800		60.7	33.8	0.962	9.27	8.92	281		491
1	210	600	3000	800									

(b) Y 方向

	板厚	せい	階高	はりせい	座屈長さ				圧縮強度	座屈強度	軸ばね1本あたりの	CLTの	軸ばね1本あたりの
階	t _w	D_{w}	h	D _b	I _b	i	$\lambda = I_b/i$	低減率	_t F _c	$_{\rm tv}{\sf F}_{\rm c}$	支圧耐力 "pu	支圧剛性k _e	支圧剛性kw
	mm	mm	mm	mm	mm				N/mm^2	N/mm^2	kN	N/mm ³	kN/mm
6	150	750	2800	600									
5	150	750	2850	650		43.4	47.3	0.827	9.72	8.04	226		439
4	150	750	2900	700	2050							15.6	
3	210	750	2950	750	2050							10.0	
2	210	750	3000	800]	60.7	33.8	0.962	9.27	8.92	351		614
1	210	750	3000	800	1								

 $t_w: CLT 袖壁の壁厚、<math>D_w: 袖壁のせい、h: 階高、D_o: 大はりのせい、l: 座屈長さ、f: 断面二次半径、$ $<math>\lambda$ 有効細長比、tFo: CLT の圧縮に関する基準強度、tvFa: CLT の圧縮の基準強度を用いた座屈強度 (鉛直方向)、vpa: ばね1本あたりの支圧耐力、ko: CLT の支圧剛性、kw: ばね1本あたりの支圧剛性

せん断ばねは、水平接合部ごとに4本の軸ばねのいずれかと直列する形で、表 3.1.16 に示すルール に基づいて、CLT 袖壁に斜め方向の圧縮ストラットが形成されることを想定して、ばねの位置を決め ている。なお、CLT 袖壁の端部に設ける滑り止めに関しては、後述の保証設計において、CLT 袖壁が 負担する水平せん断力の伝達に必要な耐力が確保されているかどうか確認するが、モデル化において は、摩擦力による水平せん断力の伝達が支配的なものと考え、せん断ばねにはせん断変形が生じない ものと仮定している。

	加力方向に対して引張側の CLT 袖壁	加力方向に対して圧縮側の CLT 袖壁
トは生	CLT 袖壁側の塑性ヒンジに最も近い	RC 柱フェイスに最も近い
¥m	軸ばねに設置	軸ばねに設置
下进	RC 柱フェイスに最も近い	CLT 袖壁側の塑性ヒンジに最も近い
「上本山	軸ばねに設置	軸ばねに設置

表 3.1.16 CLT 袖壁の水平接合部のせん断ばねの取り付け位置(RC+CLT モデル)

RC モデルでは、RC 柱フェイス位置に RC はりの塑性ヒンジを設けたが、RC+CLT モデルでは、 3.1.4 (b)で示したモデル化の手法にしたがい、RC 柱フェイス位置に加え、CLT 袖壁フェイスに近い位 置にも塑性ヒンジを設けた。なお、表 3.1.17 に式(3.1.6)に基づいて算定した CLT 袖壁フェイス位置か ら RC はりの塑性ヒンジまでの距離 L_b を示すが、袖壁せい D_w に対する比率を平均値で示すと、X 方 向では 1~3 階で 0.38 (227mm)、4~6 階で 0.27 (163mm)、Y 方向では 1~3 階で 0.42 (312mm)、4~

B-183

6 階で 0.37 (276mm) とほぼ一定の値を示したことから、モデルの簡略化も踏まえて、CLT 袖壁フェ イス側 (スパン内側) から数えて二つ目の軸ばね (袖壁全せいの 3/8 (=0.375) の位置にある軸ばね) の近傍に塑性ヒンジを設けることとした。3.1.2 で示した架構実験を対象とした解析事例 (詳細モデル) では、CLT 袖壁フェイス側 (スパン内側) から数えて一つ目の軸ばね (袖壁全せいの 1/8 (=0.125) の位置にある軸ばね) の近傍に塑性ヒンジを設けていることから、架構実験の場合よりも、CLT 袖壁 の支圧抵抗に対する RC はりの曲げ終局モーメントが大きく、CLT 袖壁内への RC はりの塑性ヒンジ 位置の入り込みが大きい。

表 3.1.17 CLT 袖壁フェイス位置から RC はりの塑性ヒンジまでの距離 L_bの算定(RC+CLT モデル) (a) X 方向(Y1、Y3 構面)

階	L	D _c (左側)	D _c (右側)	D _w	ьLo	_b M _u (G1:上端引張)	_{tv} F _k	t _w	L _b
	(mm)	(mm)	(mm)	(mm)	(mm)	(kNm)	(N/mm2)	(mm)	(mm)
R	6500	650	650	600	4650	422	9.72	150	121
6	6500	700	700	600	4600	562	9.72	150	162
5	6500	700	700	600	4600	719	9.72	150	205
4	6500	700	700	600	4600	1012	9.27	210	216
3	6500	750	750	600	4550	1086	9.27	210	233
2	6500	750	750	600	4550	1086	9.27	210	233
								平均	195

階	L	D _c (左側)	D _c (右側)	Dw	ьLo	_b M _u (G2:上端引張)	$_{tv}F_k$	t _w	L _b					
	(mm)	(mm)	(mm)	(mm)	(mm)	(kNm)	(N/mm2)	(mm)	(mm)					
R	5210	650	600	750	3100	569	9.72	150	234					
6	5210	700	600	750	3100	623	9.72	150	255					
5	5210	700	650	750	3100	848	9.72	150	338					
4	5210	700	650	750	3100	965	9.27	210	292					
3	5210	750	700	750	2985	1036	9.27	210	322					
2	5210	750	700	750	2985	1036	9.27	210	322					
								平均	294					

(b) Y 方向(X2~X7 構面)

*L*_b:CLT 袖壁端から RC はりの危険断面位置までの距離、*L*:対象構面の柱芯々間距離、*D*_o:柱せい、
 *D*_w:袖壁せい、bL₀:CLT 袖壁のフェイス間の内法スパン、bM_o:RC はりの曲げ終局モーメント、
 *f*_v,*f*_v:CLT の圧縮の基準強度を用いた座屈強度(鉛直方向)、*t*_w:CLT 袖壁の壁厚

RC はりの曲げモーメントー回転角関係は、3.1.4 (c)の図 3.1.32 における曲げばねが近接する場合に 基づいて計算した。これは、本設計例では、RC はりの回転角の大部分が、CLT 袖壁フェイス側の塑性 ヒンジではなく、RC 柱フェイス側の塑性ヒンジに集中しており、ヒンジリロケーションの効果が十 分でないと判断したためである。RC 柱フェイス位置における曲げばねの復元力特性は、図 3.1.32(a)に 示すように、曲げひび割れ発生後に塑性変形が生じるトリリニアとし、曲げ降伏時回転角は、RC はり のヒンジリロケーションの効果を無視し、RC はりの内法スパンの半分を RC はりのせいで除した値 をせん断スパン比として剛性低下率を計算した。また、CLT 袖壁フェイス近傍における曲げばねの復 元力特性は、図 3.1.32(b)に示す剛塑性モデルとし、ヒンジリロケーションによる剛性増大効果は見込 まないものの、RC はりに作用する曲げモーメントが曲げ終局モーメントで頭打ちとなるように配慮 した。いずれも曲げ終局モーメントの算定においては、幅 1m の範囲のスラブ筋を考慮している。

RC 柱の MS モデルに用いたコンクリート、鉄筋の応力-ひずみ関係を図 3.1.84 に示す。本設計例 でコンクリートに用いた応力-ひずみ関係は、バイリニアによるモデル化を行った簡略なものである が、本来であれば、断面内においてカバーコンクリートやコアコンクリートの区別を行い、NewRC モデル等の帯筋による拘束効果を考慮できるモデルを用いて、応力-ひずみ関係における剛性変化をよ り詳細に再現することが望ましい。なお、本設計例では、圧縮強度到達後の強度低下を考慮してない ため、保有水平耐力を計算する上では危険側の評価、保証設計用の応力を算定する上では安全側の評価となるが、前者については、保有水平耐力として層間変形角 1/100rad 時点での水平荷重を採用して いるため、後者の影響の方が大きいものと推測される。

なお、本設計例では、RC 柱に MS モデルを採用しているため、本来であれば、3.1.4 (b)に基づき、 せん断ひび割れ発生後のせん断剛性の低下を考慮するべきであるが、せん断の復元力特性を弾性とし たため、せん断剛性を過大評価している。そのため、層間変形角 1/100rad 時点での水平荷重を採用し た保有水平耐力の評価がやや危険側となっている可能性がある点に注意されたい。また、本設計例で は、MS モデルにおける RC 柱端の塑性域の長さを内法高さの 0.1 倍 (220mm) としているが、柱せい (650~800mm) と比較すると、一般的な長さよりも短い設定となっている。

図 3.1.84 MS モデルに用いたコンクリートと鉄筋の応カーひずみ関係(RC 柱)

(e) 仮定荷重、地震層せん断力

表 3.1.18 に床の仕上げ荷重と積載荷重を、表 3.1.19 に壁の仕上げ荷重を、表 3.1.20 に地震層せん断 力を示す。RC モデルと RC+CLT モデルで地震力算定用の重量(Wi) に大きな差はない。

表 3.1.18 床の仕上げ荷重と積載荷重 (N/m²)

(a) RC モデル

(b) RC+CLT モデル

名称	仕上げ	(t)	(γ)	W	DL	LL	TL]	名称	仕上げ	(t)	(γ)	w	DL		LL	TL 2
8+ m in 1	# 3 - 3	(mm)	24.0	1200	(1工上) 7000	(N/n	(N/m ²)	4	0+ m in 1	# 5 - 5.	(n	1m)	24.0	1200	(11上) 6610	6	(N/m ²)	(N/m ²)
産産(取1)	行んコン	50	24.0	1200	1050	B 600	7700		座座 (衣 立 757)	行んコン		50	24.0	1200	0010	0	600	7200
(住木///)	町形内			100	↓ 7100	E 400	7500		(住木///)	町茶竹				100	6700		400	7100
(北北)	ノスノアルト防小	亚始 20	22.0	600	/100	L 400	1500		(ままた)	ノスノアルト的小	W +51	20	22.0	600	0700		400	/100
(#E9A1J)	内町増し打り コンクリーレフニブ	7-1-0 200	23.0	4900					(9F9>1J)	内町増し打り コンクリートフラブ	구제	100	24.0	4220				
		200	24.0	4000	(2200)							100	24.0	4320	(2200)			
1.1	<u>л</u>			200	(2290)				1.1	人 井				200	(2290)			
	70 1126	12		200	E 900	C 100	7600	{		20 112/1		12		200	1020	c	1900	6900
/市里 (たまフ=プ)		25		200	5000	D 1200	7100	Ł	/ (CLT由)	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		25		200	4330	D	1200	6200
(住木///)	パーノイッルホート 称号の新中工地	20		200	E 000	E 600	6400		(GLIPK)	バーノインルホート 称号2番中工地		20		200	÷000		1300	6600
(北北)	ギムスレンタル トラニブ	200	24.0	100	5600	L 000	0400		(ままた)	143以2里床「地		120	24.0	2000	5000		000	5000
(9F3/1))		200	24.0	100	(1000)			Ł	(9F9/11))			210	24.0	1050				
	人 开			100	(1000)					CLI床 工++		210	5.0	1000	(2050)			
1.2									1.2	人 井				100	(2000)			
LZ 1 陛 民 安	フロールング	12	-	200	5700	S 1800	7500	{	LL 1 附 民 安	フローリング	+	12		200	5700	c	1800	7500
101/10 里 (左本757)	パーティカルボード	25		200	5700	B 1300	7000	1	(左 本 757)	パーティカルボード		25		200	5700	P	1300	7000
	前式2重度下地	25		500	5700	E 600	6300	ł I	(11/(//////////////////////////////////	於式2重庆下地		25		500	5700	F	600	6300
	コンクリート	200	24	4800	5700	000	0300	ł		コンクリート		200	24	4800	5700		000	0300
		200	27	4000	(900)			ł				200	24	4000	(900)			
13					(300)			1	13						(300)			
廊下	モルタル	30	20.0	600	5380	S 1800	7200	1	廊下	モルタル	-	30	20.0	600	4660	S	1800	6500
バルコニー	コンクリートスラブ	180	24.0	4320	1	R 1300	6700	i I	バルコニー	コンクリートスラブ		150	24.0	3600	Ļ	R	1300	6000
(在来スラブ)	軒裏増し打ち	20	23.0	460	5400	E 600	6000	i I	(在来スラブ)	軒裏増し打ち		20	23.0	460	4700	Е	600	5300
				0				i I	2F~5F					0				
					(1060)			i I							(1060)			
								i I							. ,			
L4								Í I	L4									
] [廊下	モルタル		30	20.0	600	5380	S	1800	7200
								ļ	バルコニー	コンクリートスラブ		180	24.0	4320	Ļ	R	1300	6700
								ļ	(在来スラブ)	軒裏増し打ち		20	23.0	460	5400	Е	600	6000
									1F					0				
								ļ							(1060)			
								4	L5		1							
FS	勾配増し打ち	100	23.0	2300	8300	S 0	8300		FS	勾配増し打ち		100	23.0	2300	8300	S	0	8300
	コンクリートスラブ	250	24.0	6000	1	R 0	8300			コンクリートスラブ		250	24.0	6000	<u> </u>	R	0	8300
					8300	E U	8300								8300	E	0	8300
					(0000)										(0000)			
					(2300)										(2300)			
L11 屋相応	抽 ナ コ い	50	24.0	1200	GEEE	1000	7600	$\left\{ \right\}$	L11 居相応	曲キコン	+	50	24.0	1200	CEEE		1000	7600
座 低 此 (た 击 っこっ 、)	がでイン	UC 04	24.0	1200	0000	1000	7200		産低比 (左束まず)	1mc コ / ク 和様し fr t	W #2	20	24.0	600	0000		1000	7200
(1±米/7/)	内町宿し打り コンカリーレフニブ	十均 30	23.0	4220		400	7000		(1±米/7/)	今町宿し打り コンカリートフニブ	平均	100	23.0	4220	÷		400	7000
	コンソリートスフノ	150	24.0	4320	0000	400	1000			コンソリートスフノ		160	24.0	4320	0000		400	1000
	軒表悟し打り	15	23.0	345	(2225)					軒表唱し打り		10	23.0	345	(2225)			
1.12			1		(2235)				1.12						(2233)			
LIZ								JI	LIZ	L			l					

表 3.1.19 壁の仕上げ荷重 (N/m²、RC モデル、RC+CLT モデル)

名称	仕上げ	(t) mm	(γ)	w	Σw
外壁 (妻壁)	窯業サイディング CLT板	210	5.0	250 1050	1300 ↓ 1500
内壁	石膏ボード t=21×2 CLT板	210	5.0	330 1050	1380 ↓ 1500

表 3.1.20 各階の地震層せん断力

(a) RC モデル

(b) RC+CLT モデル

Z=	1.0			T=	0.346	sec			Z=	1.0			T=	0.350	sec	
$C_0 =$	0.2		2T/	(1+3T)=	0.340				$C_0 =$	0.2		2T/	(1+3T)=	0.341		
階	Wi	ΣW_i	αi	Ai	Ci	Qi	Pi		階	Wi	ΣW_i	αi	Ai	Ci	Qi	Pi
	(kN)	(kN)				(kN)				(kN)	(kN)				(kN)	
6	6686	6686	0.151	1.827	0.365	2443	2443		6	6684	6684	0.154	1.819	0.364	2431	2431
5	7121	13807	0.312	1.505	0.301	4155	1712		5	6946	13630	0.314	1.502	0.300	4095	1664
4	7440	21247	0.480	1.329	0.266	5647	1492		4	7272	20902	0.482	1.328	0.266	5550	1455
3	7540	28787	0.651	1.201	0.240	6915	1269		3	7370	28272	0.652	1.201	0.240	6789	1239
2	7702	36489	0.825	1.094	0.219	7987	1072		2	7532	35804	0.825	1.094	0.219	7836	1046
1	7753	44243	1.000	1.000	0.200	8849	862]	1	7583	43387	1.000	1.000	0.200	8677	842

(f) 剛性率、偏心率

表 3.1.21、表 3.1.22 に Co=0.2 の際の地震層せん断力を用いて算定した各階の層間変形角から求めた 剛性率、偏心率を示す。いずれの階、方向でも、剛性率 R_sは 0.6 以上、偏心率 R_eは 0.15 以下に留まっ ており、F_{es}による必要保有水平耐力の割り増しは必要なく、3.1.5 の構造計算フロー(図 3.1.43 参照) で示した本マニュアルの適用条件を満足している。

(a) RC モデル(X 方向)

	層	酉 問 3	変形1	角	平均	Rs	Fs
	Y1			Y3			
R	I			_		-	-
6	1/ 11	.55	1/	1151		1.21	1.00
5	1/ 9	45	1/	942		0.99	1.00
4	1/ 8	31	1/	828	949	0.87	1.00
3	1/ 7	795		793		0.83	1.00
2	1/ 8	41	1/	838		0.88	1.00
1	1/ 11	.38	1/	1134		1.19	1.00

表 3.1.21 剛性率

(b) RC+CLT モデル(X方向)

	層間到	变形角	平均	Rs	Fs
	Y1	Y3			
R	_	_		-	-
6	1/ 1211	1/ 1206		1.35	1.00
5	1/ 911	1/ 905		1.01	1.00
4	1/ 762	1/ 762	893	0.85	1.00
3	1/ 707	1/ 703		0.79	1.00
2	1/ 762	1/ 760		0.85	1.00
1	1/ 1018	1/ 1014		1.14	1.00

(c) RC モデル(Y 方向)

				層間変	変形角				亚坮	Po	Fo
	X1	X2	Х3	X4	X5	X6	X7	X8	十均	115	15
R	_	_	_	_	_	_	_	_		-	-
6	1/ 1503	1/ 1503	1/ 1511	1/ 1511	1/ 1511	1/ 1511	1/ 1511	1/ 1519		1.14	1.00
5	1/ 1322	1/ 1322	1/ 1329	1/ 1329	1/ 1329	1/ 1329	1/ 1335	1/ 1335		1.00	1.00
4	1/ 1201	1/ 1201	1/ 1201	1/ 1201	1/ 1211	1/ 1211	1/ 1211	1/ 1211	1327	0.91	1.00
3	1/ 1113	1/ 1113	1/ 1118	1/ 1122	1/ 1118	1/ 1118	1/ 1122	1/ 1122		0.85	1.00
2	1/ 1176	1/ 1176	1/ 1181	1/ 1172	1/ 1181	1/ 1186	1/ 1186	1/ 1186		0.88	1.00
1	1/ 1609	1/ 1609	1/ 1609	1/ 1628	1/ 1618	1/ 1618	1/ 1618	1/ 1628		1.23	1.00

(d) RC+CLT モデル(Y方向)

				層間変	变形角				亚坮	Pa	Fo
	X1	X2	X3	X4	X5	X6	X7	X8	十均	rts	гъ
R	_	_	_	_	_	_	_	_		_	_
6	1/ 1608	1/ 1608	1/ 1608	1/ 1375	1/ 1618	1/ 1618	1/ 1618	1/ 1618		1.29	1.00
5	1/ 1285	1/ 1291	1/ 1291	1/ 1503	1/ 1291	1/ 1297	1/ 1297	1/ 1297		1.03	1.00
4	1/ 1122	1/ 1122	1/ 1127	1/ 1127	1/ 1127	1/ 1127	1/ 1132	1/ 1132	1248	0.90	1.00
3	1/ 1011	1/ 1011	1/ 1015	1/ 1015	1/ 1019	1/ 1019	1/ 1022	1/ 1022		0.81	1.00
2	1/ 1046	1/ 1050	1/ 1046	1/ 1050	1/ 1054	1/ 1054	1/ 1054	1/ 1058	1	0.84	1.00
1	1/ 1410	1/ 1410	1/ 1418	1/ 1418	1/ 1418	1/ 1425	1/ 1425	1/ 1425	1	1.13	1.00

렸	e (1	mm)	r (r	nm)	R	le	F	е						
阳	Х	Y	Х	Y	Х	Y	Х	Y						
6	36	141	17555	15328	0.0080	0.0024	1.00	1.00						
5	44	116	17973	15169	0.0065	0.0029	1.00	1.00						
4	46	106	18236	15120	0.0059	0.0031	1.00	1.00						
3	47	94	18091	15219	0.0052	0.0031	1.00	1.00						
2	47	93	17949	15149	0.0052	0.0032	1.00	1.00						
1	48	117	18049	15121	0.0065	0.0032	1.00	1.00						

表 3.1.22 偏心率 (a) RC モデル

(b) RC+CLT モデル

			·				r	
REE	e (1	mm)	r (r	nm)	F	Re	F	е
PE	Х	Y	Х	Y	Х	Y	Х	Y
6	36	141	17957	15266	0.0079	0.0023	1.00	1.00
5	47	121	18384	15102	0.0066	0.0031	1.00	1.00
4	47	112	18638	15054	0.0060	0.0031	1.00	1.00
3	34	102	18526	15156	0.0055	0.0023	1.00	1.00
2	50	100	18257	15151	0.0055	0.0033	1.00	1.00
1	54	124	18306	15124	0.0068	0.0035	1.00	1.00

(g) 荷重変形関係

図 3.1.85 に RC モデル、RC+CLT モデルにおける各階の層せん断力-層間変形角関係を示す。図中 には、短期荷重時、保有水平耐力時、D_s算定時のプロットを示している。ここで、短期荷重時は C₀=0.2 に相当する地震荷重が作用した時点、保有水平耐力時はいずれ階の層間変形角が 1/100rad に到達した 時点、D_s算定時はいずれかの階の層間変形角が、RC モデルの場合は 1/50rad、RC+CLT モデルの場合 は 1/33rad に到達した時点の層せん断力と層間変形角の関係を示している。

RCモデルと比較すると、RC+CLTモデルでは、短期荷重時の各階における層間変形角の平均値が X 方向で 16% (RCモデル: 0.25×10⁻²rad、RC+CLTモデル: 0.21×10⁻²rad)、Y 方向で 23% (RCモデ ル: 0.17×10⁻²rad、RC+CLTモデル: 0.13×10⁻²rad)に低減しており、CLT 袖壁による変形の抑制効果が 確認できる。また、RC+CLTモデルの保有水平耐力は、RCモデルと比較して、X 方向で 1.22 倍、Y 方向で 1.24 倍大きく、剛性、耐力とも 2 割近い増大効果が見られた。なお、RCモデルでは、保有水 平耐力 (1/100rad)時と保証設計(1/50rad)時の層せん断力の差が X、Y 方向でそれぞれ 2、3%に留ま っており、崩壊機構の形成後は耐力がほぼ頭打ちとなっていることが確認できるが、RC+CLTモデル では、保有水平耐力(1/100rad)時と保証設計(1/33rad)時の層せん断力の差が X、Y 方向でそれぞれ 11、12%に及ぶことから、崩壊機構の形成後も耐力が頭打ちとならず、耐力上昇を続けることが分か る。この原因としては、本設計例では、RC 柱の MS モデルのコンクリートや CLT 袖壁の軸ばねの復 元力特性の設定時に強度低下を再現したモデル化を行っていないことに加え、3.1.8(a)で示したように、 RC 柱と CLT 袖壁を別の部材としてモデル化したことにより、RC はりの RC 柱フェイス位置における 回転変形の増大に伴い、崩壊機構の形成後も CLT 袖壁の負担する圧縮軸力が増大したことが挙げられ る。限界耐力計算であれば、崩壊機構形成後の耐力上昇を地震時の応答変位の低減といった形で評価 することが可能であるが、地震時の応答変位が陽な形で表れない保有水平耐力計算では、崩壊機構形 成後の耐力増加を踏まえた保証設計を行う必要がある。そこで、本設計例では、RC+CLT モデルにお ける保証設計を RC モデルよりも大きい変形状態で行うこととしている。

(h) 長期荷重時、短期荷重時の応力状態

以下に、RC+CLT モデルにおける長期荷重時、長期荷重時+短期荷重時の応力状態を示す。表 3.1.23、表 3.1.24 に長期荷重時に RC+CLT モデルの RC 柱と CLT 袖壁が負担する圧縮軸力を示 す。ここでは比較がしやすいように、X、Y 方向の構面ごとに結果を示している。また、Y 方向に ついては、平面形状が対称であるため、X1~X4 構面の結果のみを示している。(c)構造設計の方 針で説明したように、今回使用した解析プログラムでは、RC ラーメンの施工後に CLT 袖壁を挿 入する施工の手順が再現できなかったため、長期荷重の一部が CLT 袖壁に作用している。但し、 CLT 袖壁に作用する長期軸力は、軸力全体の 4~9%に留まっており、影響は比較的軽微である。

表 3.1.23 長期荷重時の RC 柱、CLT 袖壁の軸力(X 方向、単位:kN)

(a) RC 柱

Y1		X1	X2	Х3	X4	X5	X6	X7	X8	Y2		X1	X2	Х3	X4	X5	X6	X7	X8
	6F	172	306	313	307	306	306	404	170		6F	329	462	502	461	469	457	498	318
	5F	383	611	626	618	618	616	609	380		5F	585	792	839	788	800	782	843	565
	4F	580	903	932	919	918	916	903	575		4F	839	1119	1175	1112	1127	1104	1180	812
	3F	767	1165	1210	1188	1187	1184	1166	761		3F	1071	1411	1491	1402	1420	1392	1484	1038
	2F	975	1479	1534	1508	1507	1503	1480	968		2F	1326	1746	1839	1733	1755	1721	1832	1286
	1F	1167	1764	1828	1796	1795	1791	1765	1159		1F	1572	2060	2175	2043	2069	2030	2161	1526

Y3		X1	X2	Х3	X4	X5	X6	X7	X8
	6F	263	308	323	307	308	307	311	253
	5F	554	630	646	624	628	625	631	531
	4F	828	940	960	930	934	930	939	793
	3F	1087	1218	1245	1204	1209	1204	1213	1043
	2F	1377	1548	1578	1528	1534	1528	1539	1321
	1F	1646	1840	1873	1814	1821	1814	1826	1581

Y1		X1	X2	X2	Х3	Х3	X4	X4	X5	X5	X6	X6	X7	X7	X8
	6F	18	14	14	14	14	14	14	14	14	14	14	14	14	18
	5F	10	17	18	18	18	18	18	18	18	18	18	18	17	10
	4F	18	26	26	27	27	27	27	27	27	27	27	26	26	18
	3F	31	45	46	48	48	47	47	47	47	47	47	47	45	31
	2F	36	51	52	53	53	53	53	53	53	53	53	52	51	36
	1F	46	67	70	72	71	70	70	70	70	70	70	70	67	46
		_				_	_				_				
Y3		X1	X2	X2	Х3	Х3	X4	X4	X5	X5	X6	X6	X7	X7	X8
	6F	19	13	14	14	14	14	13	14	14	14	14	14	14	20
	5F	15	18	18	18	18	18	17	18	18	18	18	18	17	14
	4F	24	26	27	27	27	27	26	26	26	26	26	26	27	23
	3F	42	48	47	48	48	46	46	46	46	46	46	47	46	40
	2F	48	52	52	53	53	52	52	52	52	52	52	52	52	46
	1F	64	71	73	74	73	71	71	71	71	71	71	72	70	62

	X1		Y1	Y2	Y3	X2		Y1	Y2	Y3	X3		Y1	Y2	Y3	X4		Y1	Y2	Y3	
		6F	172	329	263		6F	306	462	308		6F	313	502	323		6F	307	461	307]
		5F	383	585	554		5F	611	792	630		5F	626	839	646		5F	618	788	624	1
		4F	580	839	828		4F	903	1119	940		4F	932	1175	980		4F	919	1112	930	1
		3F	767	1071	1087		3F	1165	1411	1218		3F	1210	1491	1245		3F	1188	1402	1204	1
		2F	975	1326	1377		2F	1479	1746	1548		2F	1534	1839	1578		2F	1508	1733	1528	1
		1F	1167	1572	1646		1F	1764	2060	1840		1F	1828	2175	1873		1F	1796	2043	1814]
				-	_	-			(b)	CL	T袖	壁									
	Y1	Y2	Y2	Y3	X2		Y1	Y2	Y2	Y3	Х3		Y1	Y2	Y2	Y3	X4		Y1	Y2	Y2
6F	17	18	22	25		6F	28	36	28	30		6F	19	18	26	19		6F	27	32	31
5F	14	23	23	21		5F	23	32	31	24		5F	15	20	21	15		5F	24	31	31
4F	23	32	33	32		4F	36	40	40	36		4F	23	26	26	23		4F	36	40	40
3F	41	55	56	55	F	3F	61	69	69	62	1	3F	40	15	15	30		3F	62	63	68

2F

1F

2F

1F

X1

2F 1F 2F

1F

表 3.1.24 長期荷重時の RC 柱、CLT 袖壁の軸力(Y 方向、単位:kN) (a) RC 柱

表 3.1.25、表 3.1.26 に RC+CLT モデルの RC 柱と CLT 袖壁が負担する長期荷重時と短期荷重時 の軸力の和(正: 圧縮、負: 引張)を示す。CLT 袖壁はいずれも圧縮軸力を負担しており、水平 せん断力の伝達時に摩擦抵抗に期待できる状態であること、水平加力の方向に対して、RC 柱の圧 縮側に取り付く CLT 袖壁(右側)の方が、RC 柱の引張側に取り付く CLT 袖壁(左側)よりも圧 縮軸力が大きいこと等が確認できる。CLT 袖壁に作用する圧縮軸力は、X 方向では軸力全体の7 ~10%、Y 方向では軸力全体の 9~16%に留まっており、CLT 袖壁の軸力負担は RC 柱と比較して 小さい。

表 3.1.25	長期荷	重時+短期	荷重日	寺の R(C柱、	CLT 袖壁の軸力
			V 4	VON		

(X 方向(加力方向:X1→X8)、単位:kN)

(a) RC 柜	ŧ
----------	---

Y1		X1	X2	Х3	X4	X5	X6	X7	X8	Y3		X1	X2	Х3	X4	X5	X6	X7	X8
	6F	129	273	281	274	273	271	372	185		6F	220	276	291	274	275	275	277	268
	5F	248	571	585	576	577	573	567	474		5F	420	593	607	583	586	582	586	623
	4F	299	863	883	868	869	865	844	802		4F	550	905	914	881	884	876	882	1009
	3F	280	1113	1131	1108	1109	1104	1059	1158		3F	603	1175	1171	1126	1128	1120	1105	1428
	2F	247	1459	1459	1433	1435	1429	1350	1601		2F	653	1540	1510	1455	1458	1448	1403	1942
	1F	167	1745	1759	1728	1731	1728	1610	2063		1F	653	1805	1814	1750	1753	1742	1662	2468

(b) CIT 抽辟

						(D)	/ 01	- TP	1 ±						
Y1		X1	X2	X2	Х3	Х3	X4	X4	X5	X5	X6	X6	X7	X7	X8
	6F	25	39	24	40	24	39	24	40	24	40	25	39	24	40
	5F	25	43	39	44	39	44	39	44	39	44	40	44	38	37
	4F	39	56	55	57	56	57	56	57	56	57	56	56	55	50
	3F	65	92	93	94	94	93	93	93	93	93	93	92	92	79
	2F	68	96	99	96	99	96	99	96	99	96	99	94	97	85
	1F	99	79	145	81	143	79	143	79	143	79	142	78	138	64
															_
Y3		X1	X2	X2	Х3	Х3	X4	X4	X5	X5	X6	X6	X7	X7	X8
	6F	26	38	24	40	24	40	23	40	24	40	23	40	24	42
	5F	30	44	39	45	39	44	38	44	39	45	38	45	37	42
	4F	46	56	56	57	56	57	55	55	55	57	54	56	57	56
	3F	77	95	94	94	94	92	92	92	92	93	90	92	93	89
	2F	80	97	99	96	99	95	98	95	98	95	98	94	98	94
	1F	117	83	149	83	146	80	144	80	144	80	144	79	141	79

表 3.1.26 長期荷重時+短期荷重時の RC 柱、CLT 袖壁の軸力

(Y方向(加力方向:Y1→Y3)、単位:kN)

(a) RC 柱

X1		Y1	Y2	Y3	X2		Y1	Y2	Y3	Х3		Y1	Y2	Y3	X4		Y1	Y2	Y3
	6F	117	290	285		6F	251	422	332		6F	257	463	348		6F	251	422	332
	5F	228	536	660		5F	442	741	751		5F	455	788	769		5F	447	737	747
	4F	277	780	1065		4F	556	1058	1218		4F	581	1114	1261		4F	569	1051	1211
	3F	260	973	1486		3F	592	1310	1671		3F	631	1390	1703		3F	610	1301	1661
	2F	237	1227	2002		2F	646	1644	2251		2F	694	1737	2286		2F	669	1631	2235
	1F	195	1491	2512		1F	663	1972	2803		1F	720	2087	2842		1F	690	1955	2781

(b)	CLI	「袖壁

										(/												
X1		Y1	Y2	Y2	Y3	X2		Y1	Y2	Y2	Y3	Х3		Y1	Y2	Y2	Y3	X4		Y1	Y2	Y2	Y3
	6F	29	43	36	47		6F	40	60	44	51		6F	31	41	42	40		6F	39	55	47	50
	5F	34	49	49	48		5F	44	59	57	50		5F	35	47	47	41		5F	44	58	57	50
	4F	46	64	65	66		4F	58	74	70	72		4F	45	60	56	59		4F	58	74	70	71
	3F	77	104	110	110		3F	97	118	122	118		3F	75	94	98	95		3F	97	112	121	117
	2F	82	116	125	118		2F	104	128	135	129		2F	79	101	107	102		2F	105	127	134	128
	1F	105	113	155	112		1F	76	125	170	124		1F	99	88	138	91		1F	131	123	171	123

表 3.1.27、表 3.1.28 に RC+CLT モデルの RC 柱と CLT 袖壁が負担する長期荷重時と短期荷重時の水平せん断力の和を示す。CLT 袖壁が負担する水平せん断力は、X 方向では層せん断力の 4~8%、Y 方向では層せん断力の 4~5%程度であり、層せん断力の大部分は RC 柱によって負担されている。また、CLT 袖壁の水平せん断力を、表 3.1.25、表 3.1.26 で示した CLT 袖壁の圧縮軸力で除した値は、X 方向では最大で 0.21、Y 方向では最大で 0.22 に留まり、3.1.3(c)で想定した摩擦係数(0.4~0.5) を十分に下回っていることから、せん断伝達に支障がないことが確認できる。

表 3.1.27 長期荷重時+短期荷重時の RC 柱、CLT 袖壁のせん断力

(X方向(加力方向:X1→X8)、単位:kN)

								(;	a) F	RC 村	Ē								
Y1		X1	X2	Х3	X4	X5	X6	X7	X8	Y3		X1	X2	Х3	X4	X5	X6	X7	X8
	6F	18	153	167	166	166	168	174	137		6F	31	157	167	166	166	167	167	129
	5F	116	263	276	275	275	277	287	179		5F	126	276	281	280	281	280	281	164
	4F	174	364	372	371	371	372	386	241		4F	186	377	378	378	378	377	382	224
	3F	228	444	446	446	446	446	464	291		3F	238	457	453	452	452	452	465	290
	2F	262	523	519	519	519	519	541	328		2F	272	539	528	528	528	528	546	326
	1F	362	581	562	564	564	563	582	436		1F	365	683	664	564	564	563	580	433

(b) CLT 袖壁

						(,									
Y1		X1	X2	X2	Х3	Х3	X4	X4	X5	X5	X6	X6	X7	X7	X8
	6F	0	7	1	7	2	7	2	7	2	6	4	5	2	7
	5F	3	7	5	8	5	8	5	8	5	7	6	7	6	8
	4F	5	8	6	9	6	9	6	9	6	9	7	8	7	9
	3F	8	11	10	12	10	12	10	12	10	12	10	12	11	13
	2F	7	11	10	11	10	11	10	11	10	11	9	12	11	13
	1F	10	4	13	4	13	4	13	4	13	4	2	15	14	6
					_										
Υ3		X1	X2	X2	Х3	Х3	X4	X4	X5	X5	X6	X6	X7	X7	X8
	6F	0	7	2	7	2	7	2	6	2	8	1	7	4	7
	5F	3	8	5	8	5	8	5	7	5	9	4	8	4	8
	4F	5	9	6	9	6	9	6	8	6	10	5	8	7	9
	3F	8	12	10	12	10	12	10	12	10	14	9	12	10	13
	2F	7	12	10	11	10	11	10	11	10	11	10	11	10	12
			_											4.0	

表 3.1.28 長期荷重時+短期荷重時の RC 柱、CLT 袖壁のせん断力

(Y方向(加力方向:Y1→Y3)、単位:kN)

(a) RC 柱

X1		Y1	Y2	Y3	X2		Y1	Y2	Y3	Х3
(6F	70	124	57		6F	80	142	68	
ļ	5F	109	197	106		5F	136	234	134	
4	4F	149	264	142		4F	181	337	174	
	3F	195	348	189		3F	214	389	209	
1	2F	221	366	222		2F	251	459	254	
	1F	277	378	282		1F	301	471	306	

£								
	Y1	Y2	Y3	X4		Y1	Y2	Y3
6F	80	141	67		6F	80	141	67
5F	136	233	133		5F	136	233	133
4F	180	336	173		4F	180	336	173
3F	214	388	209		3F	214	388	208
2F	250	458	253		2F	250	457	253
1F	301	470	306		1F	300	469	305

(b) CLT 袖壁

X1		Y1	Y2	Y2	Y3	X2		Y1	Y2	Y2	Y3	Х3		Y1	Y2	Y2	Y3	X4		Y1	Y2	Y2	Y3
	6F	4	8	5	7		6F	4	7	6	7		6F	4	7	6	7		6F	4	7	6	7
	5F	7	8	8	8		5F	7	9	8	6		5F	7	9	8	8		5F	7	9	8	8
	4F	8	10	10	10		4F	7	11	9	11		4F	7	10	9	11		4F	7	10	9	11
	3F	11	15	16	16		3F	11	15	16	16		3F	11	15	16	16		3F	11	15	16	16
	2F	10	14	16	16		2F	10	14	16	17		2F	10	14	16	17		2F	10	14	16	17
	1F	12	8	16	9		1F	12	7	17	10		1F	12	7	17	10		1F	12	7	17	10

表 3.1.29 に RC+CLT モデルの CLT 袖壁が負担する長期荷重時と短期荷重時の平均せん断応力 の和を示す。CLT 袖壁の平均せん断応力の和の最大値は、X 方向では 1~3 階(厚さ 210mm)で 0.11N/mm²、4~6階(厚さ150mm)で0.12N/mm²、Y方向では1~3階(厚さ210mm)で0.10N/mm²、 4~6階(厚さ150mm)で0.11N/mm²となり、せん断の基準強度(2.7N/mm²)に対して小さい。

表 3.1.29 長期荷重時+短期荷重時の CLT 袖壁の平均せん断応力(単位:N/mm²)

(a) X 方向(加力方向: X1→X8)

				-										-	
Y1		X1	X2	X2	Х3	Х3	X4	Χ4	X5	X5	X6	X6	X7	X7	X8
	6F	0.00	0.08	0.01	0.08	0.02	0.08	0.02	0.08	0.02	0.07	0.04	0.06	0.02	0.08
	5F	0.03	0.08	0.06	0.09	0.06	0.09	0.06	0.09	0.06	0.08	0.07	0.08	0.07	0.09
	4F	0.06	0.09	0.07	0.10	0.07	0.10	0.07	0.10	0.07	0.10	0.08	0.09	0.08	0.10
	3F	0.06	0.09	0.08	0.10	0.08	0.10	0.08	0.10	0.08	0.10	0.08	0.10	0.09	0.10
	2F	0.06	0.09	0.08	0.09	0.08	0.09	0.08	0.09	0.08	0.09	0.07	0.10	0.09	0.10
	1F	0.08	0.03	0.10	0.03	0.10	0.03	0.10	0.03	0.10	0.03	0.02	0.12	0.11	0.05

Y3		X1	X2	X2	Х3	Х3	X4	Χ4	X5	X5	X6	X6	X7	X7	X8
	6F	0.00	0.08	0.02	0.08	0.02	0.08	0.02	0.07	0.02	0.09	0.01	0.08	0.04	0.08
	5F	0.03	0.09	0.06	0.09	0.06	0.09	0.06	0.08	0.06	0.10	0.04	0.09	0.04	0.09
	4F	0.06	0.10	0.07	0.10	0.07	0.10	0.07	0.09	0.07	0.11	0.06	0.09	0.08	0.10
	3F	0.06	0.10	0.08	0.10	0.08	0.10	0.08	0.10	0.08	0.11	0.07	0.10	0.08	0.10
	2F	0.06	0.10	0.08	0.09	0.08	0.09	0.08	0.09	0.08	0.09	0.08	0.09	0.08	0.10
	1F	0.08	0.04	0.10	0.03	0.10	0.03	0.10	0.03	0.10	0.03	0.10	0.03	0.10	0.05

(b) Y 方向(加力方向: Y1→Y3)

X1

	Y1	Y2	Y2	Y3	X2		Y1	Y2	Y2	Y3	Х3		Y1	Y2	Y2	Y3	X4		Y1	Y2	Y2	Y3
6F	0.04	0.07	0.04	0.06		6F	0.04	0.06	0.05	0.06		6F	0.04	0.06	0.05	0.06		6F	0.04	0.06	0.05	0.06
5F	0.06	0.07	0.07	0.07		5F	0.06	0.08	0.07	0.05		5F	0.06	0.08	0.07	0.07		5F	0.06	0.08	0.07	0.07
4F	0.07	0.09	0.09	0.09		4F	0.06	0.10	0.08	0.10		4F	0.06	0.09	0.08	0.10		4F	0.06	0.09	0.08	0.10
3F	0.07	0.10	0.10	0.10		3F	0.07	0.10	0.10	0.10		3F	0.07	0.10	0.10	0.10		3F	0.07	0.10	0.10	0.10
2F	0.06	0.09	0.10	0.10		2F	0.06	0.09	0.10	0.11		2F	0.06	0.09	0.10	0.11		2F	0.06	0.09	0.10	0.11
1F	0.08	0.05	0.10	0.06		1F	0.08	0.04	0.11	0.06		1F	0.08	0.04	0.11	0.06		1F	0.08	0.04	0.11	0.06

表 3.1.30、表 3.1.31、表 3.1.32、表 3.1.33 に RC+CLT モデルの RC はりが負担する長期荷重時、 長期荷重時+短期荷重時のせん断力、曲げモーメントを示す。表中のCはRC柱フェイスに設け た曲げばね位置を、WはCLT 袖壁フェイスに近い曲げばね位置を、Mは内法スパンの中央を示し ている。

Y1			X1	-X2			X2	-X3			X3	-X4			X4	-X5	
		С	W	W	С	С	W	W	С	С	W	W	С	С	W	W	С
	RF	93	91	-94	-100	105	99	-99	-105	105	99	-99	-106	106	99	-99	-106
	6F	89	67	-50	-60	73	63	-67	72	72	62	-63	-73	72	63	-63	-72
	5F	77	70	-54	-60	72	66	-66	-72	72	66	-67	-72	72	66	-66	-72
	4F	72	71	-56	-51	62	68	-68	-61	61	68	-69	-62	62	68	-68	-62
	3F	81	71	-60	-69	80	70	-70	-79	79	70	-70	-80	79	70	-70	-79
	2F	72	68	-62	-61	66	70	-70	-66	66	70	-70	-67	67	70	-70	-67
	1F	165	17	-152	-256	238	230	-131	-233	235	133	-135	-235	235	134	-134	-235
		Y1			X5-	X6			X6-	-X7			X7-	-X8		ĺ	
				С	W	W	С	С	W	W	С	С	W	W	С	Ì	
			RF	105	99	-99	-106	106	98	-98	-105	100	93	-91	-93	ĺ	
			6F	72	63	-63	-72	72	63	-62	-72	60	50	-67	-89		
			5F	72	66	-66	-72	72	66	-66	-71	59	54	-70	-77		
			4F	62	68	-68	-62	62	69	-67	-61	51	56	-71	-72		
			3F	79	70	-70	-79	80	71	-69	-79	69	60	-71	-81		
			2F	67	70	-70	-67	67	71	-69	-66	61	62	-68	-73		
			1F	235	134	-133	-234	224	131	-137	-237	250	152	-97	-173		
Y3			X1	-X2			X2	-X3			X3	-X4			X4	-X5	
		С	W	W	С	С	W	W	С	С	W	W	С	С	W	W	С
	RF	79	78	-90	-97	101	95	-95	-101	101	94	-95	-102	102	95	-95	-101
	6F	76	58	-57	-66	71	61	-60	-70	69	60	-62	-71	71	61	-61	-70
	5F	65	60	-61	-67	70	65	-64	-69	69	63	-65	-71	70	65	-64	-69
	4F	58	62	-63	-57	60	67	-66	-59	58	65	-67	-61	60	66	-66	-60
	3F	71	62	-66	-75	78	68	-67	-77	76	67	-69	-78	78	68	-68	-77
	2F	61	62	-66	-62	62	68	-68	-62	62	67	-68	-63	63	68	-68	-63
	1F	181	87	-143	-245	229	125	-118	-223	225	121	-122	-224	223	122	-122	-224
		Y3			X5-	X6			X6-	-X7			X7-	X8		ĺ	
				С	W	W	С	С	W	W	С	С	W	W	С		
			RF	101	95	-93	-102	102	95	-94	-101	99	93	-84	-84		
			6F	70	61	-60	-70	71	62	-60	-69	65	54	-59	-79		
			5F	70	64	-63	-70	71	65	-64	-69	65	60	-60	-66		
			4F	60	66	-65	-60	61	67	-65	-59	55	60	-63	-60		
			3F	77	68	-68	-77	78	69	-67	-77	73	64	-63	-72		
			2F	63	68	-68	-63	63	69	-67	-61	60	64	-63	-62		
			1F	224	122	-121	-223	221	119	-125	-227	242	141	-86	-178		
							(1	<u>, , , , , , , , , , , , , , , , , , , </u>	/ -	É							

表 3.1.30 長期荷重時の RC はりのせん断力(単位:kN) (a) X 方向

(b) Y 方向

								· ·	- / -										
X1			Y1	-Y2			Y2	-Y3		X2			Y1	-Y2			Y2	-Y3	
		С	W	W	С	С	W	W	С			С	W	W	С	С	W	W	С
	RF	57	61	-108	-101	94	96	-76	-65		RF	79	91	-23	-251	162	168	-103	-89
	6F	62	49	-53	-56	66	56	-54	-66		6F	86	69	-12	-166	110	98	-81	-98
	5F	55	54	-56	-55	62	59	-57	-57		5F	70	70	-16	-158	108	102	-82	-83
	4F	49	55	-57	-44	50	59	-60	-48		4F	57	68	-17	-141	91	103	-81	-69
	3F	58	54	-60	-56	61	61	-60	-62		3F	71	67	-20	-160	111	107	-79	-83
	2F	48	49	-65	-54	54	62	-59	-49		2F	60	66	-22	-149	101	108	-78	-70
	1F	133	55	-150	-252	238	124	-57	-158		1F	193	84	-80	-448	374	240	-117	-229
Х3			Y1	-Y2			Y2	-Y3		X4			Y1	-Y2			Y2-	-Y3	
		С	W	W	С	С	W	W	С			С	W	W	С	С	W	W	С
	RF	81	84	-30	-232	223	233	-104	-100		RF	74	85	-29	-228	185	200	-94	-81
	6F	82	67	-14	-138	143	126	-81	-97		6F	80	65	-16	-149	124	112	-72	-89
	5F	73	68	-18	-140	138	130	-81	-86		5F	66	65	-20	-145	119	115	-73	-74
	10	62	67	10	120	107	122	70	75		45	E O	C A	21	107	102	116	70	61

		Y1-	-Y2			Y2·	-Y3	
	С	W	W	С	С	W	W	С
RF	81	84	-30	-232	223	233	-104	-100
6F	82	67	-14	-138	143	126	-81	-97
5F	73	68	-18	-140	138	130	-81	-86
4F	63	67	-19	-128	127	133	-79	-75
3F	72	65	-22	-143	142	136	-78	-86
2F	63	63	-24	-137	135	139	-75	-73
1F	162	82	-81	-383	313	210	-112	-193
	· · · · · · · · · · · · · · · · · · ·							

	С	W	W	С	С	W	W	С
RF	74	85	-29	-228	185	200	-94	-81
6F	80	65	-16	-149	124	112	-72	-89
5F	66	65	-20	-145	119	115	-73	-74
4F	52	64	-21	-127	102	116	-72	-61
3F	67	63	-24	-147	122	120	-71	-74
2F	57	63	-25	-135	111	122	-69	-62
1F	192	82	-82	-424	356	222	-107	-218
					-	-		

											(a)		71	ΗJ										
Y1				X1	1-X2					X2	-X3						X3-X4					X4-X5		
		С	W		М	W	С	С	W	I	M	W	С	(2	W	Μ	W	С	С	W	М	W	С
	RF	111	35	-	-69	40	124	141	53	-	70	53	142	14	41	53	-69	55	143	142	54	-69	54	142
	6F	116	46	-	-40	9	58	92	33	-	44 3	33	92	9	1	32	-43	35	95	93	34	-43	34	93
	5F	106	44	-	-44	10	59	94	35	-	47 3	34	94	9	4	34	-46	37	97	96	36	-46	36	95
	4F	104	44	-	45	11	56	88	35	-	48 3	35	89	8	8	36	-47	38	92	91	37	-47	37	90
	3F	105	39	-	-48	15	73	101	36	-	49 3	36	102	10	01	36	-48	38	104	103	38	-48	37	103
	2F	96	36	-	45	23	76	93	36	-	49 3	37	94	9	4	37	-47	39	96	95	38	-48	38	95
	1F	74	-64	4 -	147	56	256	256	68	-1	L03 !	54	237	23	38	53	-110	55	241	241	55	-109	55	241
			Y1				X5-	X6					X6-	X7					X7-	X8				
			. –		С	V	/ N	1 V	V	С	С	W	N	1	W	С	0	: V	V N	1 V	V C	:		
			ŀ	RF	142	5	4 -6	9 5	4	143	143	50	-7	0	52	13	9 12	3 4	0 -6	9 3	5 11	2		
			ľ	6F	93	3	4 -4	3 3	4	93	94	23	-4	4	32	90) 5	7 9) -4	0 4	6 11	6		
				5F	95	3	6 -4	6 3	6	96	96	33	-4	7	33	92	2 5	9 9	-4	4 4	4 10	7		
				4F	90	3	7 -4	6 3	7	91	92	37	-4	8	33	86	5 5	5 1	1 -4	5 4	4 10	4		
				3F	103	3	7 -4	8 3	8	103	104	38	-4	9	34	95	5 73	2 1	5 -4	8 3	8 10	5		
				2F	95	3	8 -4	7 3	8	96	96	38	-4	9	36	92	2 7	5 2	3 -4	5 3	6 96	6		
			L	1F	242	5	5 -11	10 5	3	237	236	54	-1()3	68	25	6 25	6 5	6 -14	47 -6	54 73	l		
Y3	X1-X2 X2-X3 X3-X4 X4-X5																							
		С	W		Μ	W	С	С	W	1	M	W	С	0	2	W	Μ	W	С	С	W	Μ	W	С
	RF	88	23	-	-62	45	126	135	51	-	65	50	134	13	34	50	-65	52	137	137	52	-65	50	135
	6F	90	31	-	-40	24	71	91	33	-	41 3	31	88	8	7	31	-41	34	92	91	34	-41	32	89
	5F	81	28	-	-44	26	81	93	35	-	44 3	33	90	8	9	32	-44	36	95	93	35	-43	34	91
	4F	78	29	-	-44	27	76	88	36	-	45 3	34	85	8	4	33	-44	38	90	88	36	-44	35	86
	3F	83	25	-	47	29	91	101	37	-	46	34	98	9	7	34	-46	38	102	101	37	-46	35	99
	2F	80	28	-	-44	31	85	90	36	-	46 3	36	89	8	9	36	-45	38	92	92	37	-45	36	90
	Τŀ	66	- 72	-	140	51	245	241	62	-	AT ,	40	219	22	21	45	-99	48	223	223	48	-97	48	223
			Y3				X5-	X6					X6-	Χ7					X7-	X8				
					С	V	С	С	W	Ν	1	W	С		; \	V N	1 V	V C						
			Ļ	RF	136	5 5	1 -6	5 4	7	136	137	52	-6	5	49	13	4 12	9 4	6 -6	i5 2	5 95	5		
			Ļ	6F	90	3	3 -4	1 3	0	90	92	34	-4	2	30	86	5 7	3 2	1 -3	8 3	1 93	3		
			-	5F	92	3	4 - 4	4 3	1	92	94	36	-4	4	32	89	9 7	82	4 -4	4 2	5 78	3		
			ŀ	41	87	3	5 -4	4 3	2	8/	89	37	-4	5	33	83	3 /	1 2	4 -4	3 2	9 80)		
			-	3F	100) 3	6 -4	6 3	6	100	102	37	-4	·/	34	9		b 2	6 -4	6 2	6 8	2		
			┝	2F 1F	373	3	1 -4 0 0	0 3	5	91 210	92	31	-4	1	54 61	22		1 J	0 -4	3 Z	0 80			
			L	ΤL	223	4	0 -9	4	.u .	<13	219	47	-9	т	01	23	5 24	-2 3	U -1	51 -1	1 0:			
											(b)	Y	方[句										
			Y1-Y	′2					Y2-Y	′3			X2					Y1-Y	2				Y2-Y3	

表 3.1.31	長期荷重時の	RC はりの曲げモー	-メント	(単位:kN	lm)
----------	--------	------------	------	--------	-----

(a) X 方向

X3

X1

RF

6F 89 31 -22 -26 38 77 5 -45 20 87

5F 84 31 -26 -28 33 72 3 -49 19 79

4F

3F 87 29 -28

2F 73 23 -26 -16 46 72 7 -49 19 75

C W M W C C W M W C

76

85

19

33

-40

-26

-20 87 111 14 -78 12 81

-29

-27

1F 53 -64 -98 -20 222 232 4 -83 57 -126 Y1-Y2 Y2-Y3 С W Μ W С С W M W C 18 130 103 -62 -47 210 230 -93 RF 16 -15 114 30 117 140 37 136 6F -38 -40 -22 -53 5F 101 26 -42 -39 119 136 -20 -58 32 122 32 4F 100 28 -39 -41 110 126 -54 121 -21 23 -42 28 122 3F 102 -38 125 142 -19 -58 2F 92 22 -38 -30 130 147 -8 -54 25 109 1F 69 -67 -157 -64 329 336 4 -222 -95 77

25

36 69

62

-49 22 78

-52 19 85

1

1

W С W М W С С W Μ С RF 107 22 -71 -65 209 198 16 -99 18 125 6F 116 34 -41 -47 134 130 -1 -63 35 134 5F 10 29 -45 -46 129 130 -1 -67 32 121 -46 116 4F 98 -42 -64 33 116 31 116 -2 3F 102 26 -46 -45 134 135 0.1 -68 27 120 2F 93 25 -42 -36 135 139 10 -63 28 111 1F 74 -96 -159 -75 392 398 -1 -248 -126 90

			Y1-Y2					Y2-Y3	3	
	С	W	Μ	W	С	С	W	Μ	W	С
RF	96	16	-66	-49	200	200	-4	-80	18	105
6F	104	28	-39	-36	125	123	-13	-47	31	115
5F	90	24	-43	-36	123	119	-12	-51	28	102
4F	87	25	-40	-37	111	107	-15	-48	30	99
3F	92	20	-43	-35	128	125	-11	-52	24	102
2F	86	22	-40	-29	127	127	-2	-48	24	93
1F	71	-98	-157	-73	365	367	3	-228	-118	79

Χ4

表 3.1.32 長期荷重時+短期荷重時の RC はりのせん断力(単位:kN)

(a)X 方向(加力方向:X1→X8)

Y1			X1·	-X2			X2	-X3			X3	I-X4			X4	-X5	
		С	W	W	С	С	W	W	С	С	W	W	С	С	W	W	С
	RF	40	45	-140	-121	50	54	-144	-125	51	55	-143	-125	52	55	-143	-125
	6F	-21	-35	-152	-161	-36	-34	-164	-25	- 35	-34	-159	-169	-35	-33	-159	-168
	5F	-89	-90	-214	-215	-85	-81	-213	-215	-82	-80	-213	-214	226	-80	-212	-214
	4F	-154	-143	-270	-248	-146	-122	-258	-236	-146	-122	-259	-236	5 -145	-122	-258	-236
	3F	-178	-191	-322	-333	-148	-158	-298	-310	-149	-158	-298	-311	-149	-158	-298	-310
	2F	-210	-193	-323	-355	-185	-152	-292	-322	-184	-153	-293	-324	-183	-153	-293	-324
	1F	-77	-277	-446	-562	114	31	-330	-441	95	-80	-348	-456	98	-76	-344	-454
		¥1			X5-	-X6			X6	-X7		I	Χ7	'-X8			
		11		C	W	W	C	C	W	W	C	C	W	W	C		
			RF	51	55	-143	-125	50	53	-143	-125	44	47	-137	-117		
			6F	- 35	-33	-159	-168	- 37	- 35	-160	-169	-52	-51	-168	-185		
			5F	-82	-80	-212	-214	-82	-81	-213	-214	-108	-105	-229	-231		
			4F	-145	-122	-258	-236	-146	-121	-257	-236	-181	-158	-285	-269		
			3F	-149	-158	-298	-310	-148	-157	-297	-311	-193	-201	-332	-342		
			2F	-183	-153	-293	-324	-182	-151	-291	-323	-225	-200	-330	-366		
			1F	95	-78	-345	-455	97	-69	-337	-444	33	-136	-385	-479		
			<u> </u>			· · · · ·			ļ					·	<u> </u>		
Y3		0	XI	- X2	0	0	X2	-X3	0	<u> </u>	X3	5-X4	0		X4	-X5	0
	DE	26	22	126	110	16	VV EO	140	120	47	50	120	101	10	50	140	120
	RF 6E	20	32	-150	-110	40 20	27	-140	-120	47	27	-139	-121	. 40	26	-140	-120
	OF 5E	-30	-40	-100	-100	- 39	-57	-100	-100	-40	-57	-109	-100	-57	- 30	-100	-107
	J۲ AF	-105	-102	-223	-225	-07	-04	-215	-214	-152	-128	-213	-213	-00	-03	-212	-214
	3E	-102	-203	-215	-237	-15/	-120	-200	-237	-155	-120	-200	-230	-153	-16/	-200	-230
	2F	-132	-203	-320	-358	-101	-164	-203	-312	-101	-103	-203	-313	-100	-164	-203	-312
	1F	-224	-201	-323	-552	106	-137	-233	-320	-151	-130	-235	- 322	86	-137	-233	- 443
ļ	11	01	200	100	002	100		011	101	00	52	000		, 00	00	002	110
		Y3			X5-	-X6			X6-	X7			X7-	-X8			
				С	W	W	С	С	W	W	С	С	W	W	С		
			RF	47	50	-138	-121	48	50	-139	-121	43	46	-131	-109		
			6F	-39	-37	-158	-166	-39	-36	-158	-166	-47	-48	-161	-175		
			5F	-86	-84	-211	-214	-86	-85	-214	-215	-97	-92	-212	-213		
			41	-150	-127	-258	-237	-149	-126	-258	-236	-178	-156	-279	-260		
			31	-154	-164	-300	-313	-155	-162	-298	-312	-191	-201	-328	-337		
			2F 1F	-190	-157	-293	-322	-188	-155	-291	-356	-228	-200	-327	-357		
			IF	84	-91	-334	-444	94	-81	-325	-434	24	-148	-3/5	-484		

(b) Y 方向(加力方向: Y1→Y3)

X1			Y1	-Y2			Y2-	-Y3		X2			Y1-	-Y2			Y2-	-Y3	
		С	W	W	С	С	W	W	С			С	W	W	С	С	W	W	С
	RF	1	16	-153	-120	36	52	-120	-87		RF	19	43	-71	-276	98	120	-151	-116
	6F	-38	-43	-145	-147	-35	-33	-143	-151		6F	-34	-42	-123	-274	-9	-11	-190	-202
	5F	-91	-89	-199	-192	-85	-82	-198	-191		5F	-110	-108	-194	-330	-74	-75	-259	-251
	4F	-153	-135	-247	-217	-162	-131	-250	-217		4F	-172	-147	-232	-341	-149	-114	-298	-266
	3F	-171	-177	-291	-288	-171	-170	-291	-293		3F	-191	-197	-284	-426	-156	-159	-345	-348
	2F	-186	-175	-289	-303	-177	-162	-283	-300		2F	-209	-196	-284	-439	-175	-156	-342	-359
	1F	-52	-174	-379	-504	79	-97	-278	-406		1F	-26	-175	-339	-726	188	-12	-369	-512
	_																		
		-		×0										VO					
Х3			Y1	-Y2			Y2·	-Y3		X4			Y1	-Y2			Y2-	-Y3	
Х3		С	Y1 W	-Y2 W	С	С	Y2- W	-Y3 W	С	X4		С	Y1 W	-Y2 W	С	С	Y2- W	-Y3 W	С
X3	RF	C 21	¥1 W 36	-Y2 W -78	C -256	C 159	Y2- W 185	-Y3 W -152	C -126	X4	RF	C 14	¥1- W 37	-Y2 W -77	C -252	C 121	Y2- W 152	-Y3 W -142	C -107
X3	RF 6F	C 21 -37	Y1- W 36 -44	-Y2 W -78 -125	C -256 -245	C 159 24	Y2- W 185 17	-Y3 W -152 -190	C -126 -201	X4	RF 6F	C 14 -39	Y1- W 37 -46	-Y2 W -77 -127	C -252 -256	C 121 5	Y2- W 152 3	-Y3 W -142 -181	C -107 -193
Х3	RF 6F 5F	C 21 -37 -106	Y1- W 36 -44 -110	-Y2 W -78 -125 -196	C -256 -245 -311	C 159 24 -43	Y2- W 185 17 -47	-Y3 W -152 -190 -258	C -126 -201 -255	X4	RF 6F 5F	C 14 -39 -113	Y1- W 37 -46 -113	-Y2 W -77 -127 -198	C -252 -256 -316	C 121 5 -62	Y2- W 152 3 -62	-Y3 W -142 -181 -250	C -107 -193 -241
Х3	RF 6F 5F 4F	C 21 -37 -106 -165	Y1- W 36 -44 -110 -148	-Y2 W -78 -125 -196 -234	C -256 -245 -311 -328	C 159 24 -43 -113	Y2- W 185 17 -47 -84	-Y3 W -152 -190 -258 -296	C -126 -201 -255 -271	X4	RF 6F 5F 4F	C 14 -39 -113 -176	Y1- W 37 -46 -113 -150	-Y2 W -77 -127 -198 -235	C -252 -256 -316 -326	C 121 5 -62 -137	Y2- W 152 3 -62 -100	-Y3 W -142 -181 -250 -288	C -107 -193 -241 -257
Х3	RF 6F 5F 4F 3F	C 21 -37 -106 -165 -189	Y1 W 36 -44 -110 -148 -199	-Y2 W -78 -125 -196 -234 -286	C -256 -245 -311 -328 -408	C 159 24 -43 -113 -125	Y2- W 185 17 -47 -84 -130	-Y3 W -152 -190 -258 -296 -345	C -126 -201 -255 -271 -350	X4	RF 6F 5F 4F 3F	C 14 -39 -113 -176 -194	Y1 W 37 -46 -113 -150 -200	-Y2 W -77 -127 -198 -235 -287	C -252 -256 -316 -326 -412	C 121 5 -62 -137 -144	Y2- W 152 3 -62 -100 -145	-Y3 W -142 -181 -250 -288 -336	C -107 -193 -241 -257 -338
Х3	RF 6F 5F 4F 3F 2F	C 21 -37 -106 -165 -189 -205	Y1- W 36 -44 -110 -148 -199 -198	-Y2 W -78 -125 -196 -234 -286 -285	C -256 -245 -311 -328 -408 -427	C 159 24 -43 -113 -125 -140	Y2- W 185 17 -47 -84 -130 -124	-Y3 W -152 -190 -258 -296 -345 -338	C -126 -201 -255 -271 -350 -362	X4	RF 6F 5F 4F 3F 2F	C 14 -39 -113 -176 -194 -211	Y1- W 37 -46 -113 -150 -200 -198	-Y2 W -77 -127 -198 -235 -287 -286	C -252 -256 -316 -326 -412 -424	C 121 5 -62 -137 -144 -164	Y2- W 152 3 -62 -100 -145 -141	-Y3 W -142 -181 -250 -288 -336 -332	C -107 -193 -241 -257 -338 -350

表 3.1.33 長期荷重時+短期荷重時の RC はりの曲げモーメント(単位: kNm)

(a) X 方向(加力方向: X1→X8)

Y1			X1-	X2			X2	-X3			Х3	-X4			X4	-X5	
		С	W	W	С	С	W	W	С	С	W	W	С	С	W	W	С
	RF	-23	-72	136	232	8	-53	160	260	270	-50	160	259	12	-49	159	258
	6F	-172	-187	224	320	-188	-196	262	365	-186	-194	262	365	-184	-192	261	363
	5F	-348	-324	345	472	-327	-310	380	510	-324	-309	381	510	-322	-307	380	508
	4F	-509	-452	456	602	-458	-411	484	626	-457	-409	485	627	-455	-408	484	625
	3F	-639	-569	558	748	-545	-499	574	753	-547	-501	575	754	-545	-499	573	753
	2F	-654	-572	565	769	-545	-486	560	747	-548	-489	563	750	-547	-488	562	749
	1F	-873	-849	567	967	-279	-382	540	858	-366	-455	546	877	-350	-442	544	872
		Y1			X5-	-X6			X6-	-X7			X7	-X8		1	
				С	W	W	С	С	W	W	С	С	W	W	С	ł	
			RF	13	-49	159	258	11	-52	160	258	3	-53	147	237	ł	
			6F	-184	-192	261	362	-185	-201	262	364	-208	-203	278	393	í	
			5F	-323	-307	379	507	-324	-305	379	509	-356	-323	412	552	ĺ	
			4F	-456	-408	484	626	-456	-410	480	622	-501	-431	544	705	í	
			3F	-545	-500	574	753	-545	-500	569	743	-600	-527	646	843	ĺ	
			2F	-547	-488	562	749	-546	-488	555	741	-607	-519	642	851	ĺ	
			1F	-354	-445	551	880	-346	-441	512	836	-410	-462	686	1018	ĺ	
٧3	<u> </u>	1	 X1	-X2			¥2	- 23			¥3.	-X4			×4-	X5	
10		С	W	W	С	С	W	W	С	С	W	W	С	С	W	W	С
	RF	-47	-85	141	234	2	-55	157	252	4	-59	158	253	7	-51	156	251
	6F	-201	-204	242	336	-192	-198	263	364	-193	-197	264	365	-189	-194	261	361
	5F	-379	-345	366	500	-334	-315	384	512	513	-316	385	515	-331	-313	382	509
	4F	-542	-472	478	630	-457	-416	-421	630	-470	-419	492	633	-466	-416	488	536
	3F	-670	-590	579	775	-555	-526	580	759	-561	-511	582	762	-552	-508	589	759
	2F	-676	-584	578	684	-554	-491	564	748	-559	-495	566	752	-556	-494	564	750
	1F	-883	-859	563	957	-294	-388	533	841	-383	-464	540	860	-369	-450	538	855
		Y3		<u> </u>	X5.	- X6			X6-				¥7-	¥8			
				С	W	W	С	С	W	W	С	С	W	W	С		
			RF	6	-53	151	251	6	-53	157	253	7	-48	138	222		
			6F	-190	-196	255	362	-189	-196	262	362	-195	-193	264	371		
			5F	-333	-314	372	510	-332	-314	385	514	-331	-306	365	490		
			4F	-467	-417	477	628	-464	-416	486	626	-492	-424	533	689		
			3F	-553	-509	590	759	-557	-508	576	755	-597	-524	642	833		
			2F	-593	-494	565	751	-555	-493	576	743	-607	-519	639	840		
			1F	-373	-453	544	863	-364	-449	506	819	-425	-469	680	1014		
															,		
				(b) \	′方	句(加り	っ方	向:	Y1-	→Y3])				

X1		Y1-Y2				Y2-	·Y3		X2			Y1·	-Y2		Y2-Y3				
		С	W	W	С	С	W	W	С			С	W	W	С	С	W	W	С
	RF	-29	-54	46	166	19	-45	90	174		RF	-7	-57	3	294	99	-45	104	228
	6F	-117	-119	110	223	-108	-125	168	281		6F	-140	-152	108	354	-91	-151	220	379
	5F	-241	-206	179	322	-215	-198	256	394		5F	-401	-268	203	488	-229	-245	331	524
	4F	-354	-284	245	404	-327	-266	346	502		4F	-396	-322	261	549	-331	-304	396	598
	3F	-452	-369	294	497	-387	-318	419	617		3F	-503	-414	324	668	-398	-369	473	729
	2F	-462	-372	285	500	-367	-297	412	614		2F	-517	-418	323	678	-391	-354	471	726
	1F	-602	-573	183	614	-111	-211	389	710		1F	-618	-615	199	887	-48	-291	355	779
				-						,									
										, 1									
Х3			Y1-	-Y2			¥2-	-Y3		X4			Y1-	-Y2			Y2-	·Y3	
X3		С	Y1· W	-Y2 W	С	С	Y2- W	Y3 W	С	X4		С	¥1- W	Y2 W	С	С	Y2- W	·Y3 W	С
X3	RF	C -10	Y1- W -63	-Y2 W 21	C 295	C 131	Y2- W -76	-Y3 W 103	C 233	X4	RF	C -17	Y1- W -63	-Y2 W 19	C 285	C 101	Y2- W -65	•Y3 W 103	C 208
X3	RF 6F	C -10 -141	Y1- W -63 -155	-Y2 W 21 115	C 295 336	C 131 -80	Y2- W -76 -171	-Y3 W 103 221	C 233 380	X4	RF 6F	C -17 -151	Y1- W -63 -157	-Y2 W 19 119	C 285 344	C 101 -97	Y2- W -65 -162	-Y3 W 103 215	C 208 359
Х3	RF 6F 5F	C -10 -141 -309	Y1- W -63 -155 -270	-Y2 W 21 115 209	C 295 336 477	C 131 -80 -222	Y2- W -76 -171 -263	-Y3 W 103 221 330	C 233 380 524	X4	RF 6F 5F	C -17 -151 -319	Y1- W -63 -157 -272	Y2 W 19 119 212	C 285 344 480	C 101 -97 -239	Y2- W -65 -162 -255	-Y3 W 103 215 326	C 208 359 503
Х3	RF 6F 5F 4F	C -10 -141 -309 -393	Y1- W -63 -155 -270 -324	-Y2 W 21 115 209 265	C 295 336 477 542	C 131 -80 -222 -320	Y2- W -76 -171 -263 -322	-Y3 W 103 221 330 394	C 233 380 524 602	X4	RF 6F 5F 4F	C -17 -151 -319 -342	Y1- W -63 -157 -272 -326	-Y2 W 19 119 212 268	C 285 344 480 543	C 101 -97 -239 -338	Y2- W -65 -162 -255 -315	-Y3 W 103 215 326 391	C 208 359 503 579
Х3	RF 6F 5F 4F 3F	C -10 -141 -309 -393 -502	Y1- W -63 -155 -270 -324 -416	-Y2 W 21 115 209 265 330	C 295 336 477 542 658	C 131 -80 -222 -320 -389	Y2- W -76 -171 -263 -322 -387	-Y3 W 103 221 330 394 473	C 233 380 524 602 721	X4	RF 6F 5F 4F 3F	C -17 -151 -319 -342 -511	Y1- W -63 -157 -272 -326 -419	-Y2 W 19 119 212 268 332	C 285 344 480 543 660	C 101 -97 -239 -338 -406	Y2- W -65 -162 -255 -315 -379	-Y3 W 103 215 326 391 468	C 208 359 503 579 700
X3	RF 6F 5F 4F 3F 2F	C -10 -141 -309 -393 -502 -517	Y1- W -63 -155 -270 -324 -416 -420	-Y2 W 21 115 209 265 330 328	C 295 336 477 542 658 672	C 131 -80 -222 -320 -389 -382	Y2- W -76 -171 -263 -322 -387 -371	-Y3 W 103 221 330 394 473 467	C 233 380 524 602 721 723	X4	RF 6F 5F 4F 3F 2F	C -17 -151 -319 -342 -511 -522	Y1- W -63 -157 -272 -326 -419 -419	-Y2 W 19 119 212 268 332 329	C 285 344 480 543 660 668	C 101 -97 -239 -338 -406 -401	Y2- W -65 -162 -255 -315 -315 -379 -365	-Y3 W 103 215 326 391 468 466	C 208 359 503 579 700 706

(i) 保有水平耐力時の応力状態

以下に、RC+CLT モデルにおける保有水平耐力時の応力状態を示す。

図 3.1.86、図 3.1.87 に、保有水平耐力時の各構面における曲げモーメント分布を示す。図中の RC 柱、RC はりの端部における白丸は曲げひび割れが生じた箇所を、赤丸は曲げ降伏が生じた箇 所(RC 柱では断面内の 50%以上の主筋が引張降伏した時点を、RC はりでは曲げ終局モーメント に到達した時点を曲げ降伏と判定している)を示している。

X、Y 方向のいずれについても、RC はりの曲げモーメントが CLT 袖壁と接する端部でほぼ一定 となっている箇所が多数確認でき、CLT 袖壁の設置によって、RC 大ばりに作用するせん断力が増 大していることが確認できる。また、RC 柱では1 階柱脚以外は曲げ降伏は生じておらず、RC は りでも R 階を除く 2~6 階の RC 柱フェイス位置で曲げ降伏が生じていることから、保有水平耐力 時の段階で全体崩壊形が形成されつつあることが確認できる。一方で、RC はりがスパン内側 (CLT 袖壁フェイス近傍)で曲げ降伏している箇所は下層階の一部のはり端に限られることから、B タ イプの接合を採用した本設計例では、CLT 袖壁による RC はりのヒンジリロケーション効果は限 定的であったものと推測される。

(a) Y1 構面、RC 柱・CLT 袖壁(モーメント: kNm、せん断力: kN、軸力: kN))
 図 3.1.86 保有水平耐力時の応力状態(X 方向(加力方向: X1→X8))

(b) Y1 構面、RC はり(モーメント: kNm) 図 3. 1. 86 保有水平耐力時の応力状態(X 方向(加力方向: X1→X8))

(c) Y3 構面、RC 柱・CLT 袖壁(モーメント: kNm、せん断力: kN、軸力: kN)
 図 3. 1. 86 保有水平耐力時の応力状態(X 方向(加力方向: X1→X8))
B.構造分野

(a) X1 構面、RC 柱・CLT 袖壁(モーメント: kNm、せん断力: kN、軸力: kN)
 (b) X1 構面、RC はり(モーメント: kNm)
 図 3. 1. 87 保有水平耐力時の応力状態(Y 方向(加力方向: Y1→Y3))

B.構造分野

(j) *D*。算定時の応力状態

以下に、RC+CLTモデルにおける D。算定時の応力状態を示す。

図 3.1.88、図 3.1.89 に、*D*_s算定時の各構面における曲げモーメント分布を示す。図中の RC 柱、 RC はりの端部における白丸は曲げひび割れが生じた箇所を、赤丸(もしくは青丸)は曲げ降伏が 生じた箇所(RC 柱では断面内の 50%以上の主筋が引張降伏した時点を、RC はりでは曲げ終局モ ーメントに到達した時点を曲げ降伏と判定している)を示している。

保有水平耐力時と比較すると、R 階の RC はりでも RC 柱フェイス位置における曲げ降伏が確認でき、1 階柱脚、各階はり端の曲げ降伏による全体崩壊形が形成されていることが分かる。また、多くの RC はり端で、RC 柱フェイス位置だけでなく、スパン内側(CLT 袖壁フェイス近傍)においても、曲げ降伏が生じている様子が確認できる。なお、柱芯々間距離の短い Y 方向では、X2~X7 構面の中柱の最上階の柱頭において、RC はりだけでなく、RC 柱にも曲げ降伏が見られることから、後述する部材種別判定では、安全側の配慮として、より下位のランクとなるように部材種別の判定を行っている。

(a) Y1 構面 図 3.1.88 *0*。算定時の応力状態(X 方向(加力方向:X1→X8))

(c) Y3 構面図 3. 1. 88 Ds 算定時の応力状態(X 方向(加力方向: X1→X8))

B.構造分野

表 3.1.34、表 3.1.35 に RC+CLT モデルの RC 柱と CLT 袖壁が負担する D_s算定時の軸力(正: 圧縮 軸力、負: 引張軸力)を示す。

短期荷重時と同様に、CLT 袖壁はいずれも圧縮軸力を負担しており、RC 柱の圧縮側に取り付く CLT 袖壁(右側)の方が、RC 柱の引張側に取り付く CLT 袖壁(左側)よりも圧縮軸力が大きいが、CLT 袖壁が負担する圧縮軸力の比率が大幅に増大しており、CLT 袖壁が負担する圧縮軸力は、X 方向では 軸力全体の35%(1階)~117%(6階)、Y 方向では軸力全体の28%(1階)~107%(6階)に及んで おり、いずれの方向でも6階では当該階の長期荷重以上の圧縮軸力を CLT 袖壁が負担している。な お、X 方向のY2 構面では RC 柱はせん断力は負担しないが、CLT 袖壁の軸力負担に伴い、表 3.1.23 で 示した長期荷重時の圧縮軸力の一部が、直交方向の RC はりを介して Y1、Y3 構面に伝達されており、 柱に MS モデルを用いた立体解析によるモデル化の影響が伺える。なお、本設計例では、CLT 袖壁が 圧縮軸力を負担することで剛性や耐力が増大する反面、RC 柱に作用する圧縮軸力が低下することで、 RC 柱の曲げ終局モーメントやせん断耐力が低下するため、全体崩壊形の形成やせん断余裕度の確保 といった保証設計にも影響が出てくる。そのため、周囲からの軸力が集まりやすい構面に CLT 袖壁を 挿入するのが効率的であると考えられる。

	X1	X2	Х3	X4	X5	X6	X7	X8	Y2		X1	X2	Х3	X4	X5	X6	X7	X8
6F	-213	-189	-196	-195	-196	-197	-208	91		6F	77	251	266	246	254	242	280	218
5F	-198	129	111	113	114	112	85	506		5F	95	349	370	337	350	330	391	356
4F	-246	478	446	449	452	451	405	1037		4F	81	396	421	376	394	369	448	454
3F	-395	715	671	676	680	679	617	1577		3F	-41	368	397	341	363	337	429	492
2F	-586	1256	1193	1200	1206	1206	1127	2527		2F	-151	339	372	305	332	299	411	517
1F	-766	2058	1974	1985	1994	1997	1911	3778		1F	-142	414	454	374	406	365	502	602
				Y3		X1	X2	X3	X4	X5	X6	X7	X8					
					6F	-110	-183	-184	-192	-189	-191	-199	187					
					5F	-4	143	137	119	124	119	97	686					
					4F	42	506	482	457	463	455	413	1267					
					3F	-16	759	721	690	696	724	626	1866					
					2F	-106	1320	1258	1219	1225	1204	1132	2882					
					1F	-154	2146	2059	2010	2015	1988	1907	4210					
							(b)) CL	T 袖	壁								
	Y1		X1	X2	X2	Х3	Х3	Χ4	X4	X5	X5	X6	X6	X7	X7	X8		
		6F	284	317	284	318	284	318	284	318	284	318	284	318	284	313		
		5F	337	407	340	406	340	406	340	406	340	406	340	406	345	409		
		4F	408	470	420	470	419	470	419	470	419	470	419	470	429	471		
		3F	477	647	515	637	513	637	514	637	514	637	514	636	518	665		
		2F	603	494	684	482	682	482	682	482	682	482	682	480	679	537		
		1F	753	120	882	104	878	104	878	105	879	105	879	101	583	210		
			1/1				240					240						
	Y3	65	X1	X2	X2	X3	X3	X4	X4	X5	X5	X6	X6	X/	X /	X8		
		61	284	311	284	315	284	315	284	315	284	315	284	315	284	307		
		51	341	405	341	404	340	404	340	404	340	404	340	404	345	393		
		41	414	470	421	470	420	470	419	470	420	470	419	470	430	4/1		
		31	487	648 405	417	637	515	636	514	636	514	636	514	635	518	540		
		21	612	495	688	481	685	480	683	480	683	480	070	4/8	6/9	542		
		16	754	123	887	105	882	103	880	103	880	103	8/8	98	853	219		

表 3.1.34 及算	定時の RC 柱、(CLT 袖壁の負担軸カ	(X方向	(加力方向:X1→X8)、	単位:kN)
-------------	------------	-------------	------	---------------	--------

(a) RC 柱

Υ1

	Y1	Y2	Y3	X2		Y1	Y2	Y3	X3		Y1	Y2	Y3	X4	
6F	-349	-300	216		6F	-205	-100	171		6F	-202	-66	189		
5F	-500	-190	717		5F	-346	11	780		5F	-322	56	825		
4F	-694	45	1364		4F	-530	326	1493		4F	-480	359	1564		
3F	3F -1022 -78 1871 3F -883 214 2001 3F -808 278 2107 2F 1400 128 274 275 1104 584 2025														
2F	3r -1022 -76 16/1 3r -808 278 2107 2F -1408 138 2754 2F -1300 593 2874 2F -1194 584 3025														
1F	-1709	760	4006		1F	-1566	1226	4321		1F	-1437	1284	4527		
							4			0 #					

232 372

408 442

442 445

668 700

698 696

707 336

Υ1 Y2 Y2 Y3

6F

5F

4F

3F

2F

1F

326 377

417 443

442 442

539 698

664 698

707 330

表 3.1.35 ぬ算定時の RC 柱、CLT 袖壁の負担軸力(Y 方向(加力方向:Y1→Y3)、単位:kN)

(a) RC 柱

(b) CLI 袖壁 Х3

540 698 643 700

666 698 697 696

710 336

707 330

6F

5F

4F

3F

2F

1F

	-4	80	~ ,	359	1564		4F	- 4	180	(·)	818	1548	
	-8	80	2	278	2107		3F	-8	306	2	211	2089	
	-11	194	ц,	584	3025		2F	-1	192	5	517	3004	
	-14	137	1	284	4527		1F	-1	435	1	205	4500	
١	Y1	Y	2	Y2	Y3	X4		Y1	Yź	2	Y2	Y3	
3	32	33	8	251	442		6F	346	34	6	240	442	
4	18	44	3	385	442		5F	422	44	3	399	442	
4	42	44	2	442	445		4F	442	44	2	442	445	

3F

2F

1F 707 330 708 336

540 698

666 698

658 700

698 696

6F

5F

Υ1 Y2

-214 -85 178

-327 14 Υ3

810

Х1 Υ1 Y2 Y2 Y3 X2 327 343 308 6F 352 380 442 396 441 5F 441 445 442 448 4F 3F 524 682 631 695 2F 637 697 695 656 1F 707 332 709 334

X1

Χ1

表 3.1.36 に RC+CLT モデルの D。算定時における CLT 袖壁の軸力比を示す。 軸力比は、表 3.1.34、 表 3.1.35 で示した CLT 袖壁に作用する圧縮軸力を、CLT 袖壁の断面積と表 3.1.15 で示した CLT の座 屈強度で除すことで求めた。軸力比の最大値は、X方向で0.79、Y方向で0.51と大きく、特にX方向 では CLT 袖壁が軸耐力に近い軸力を負担している。

表 3.1.36 Δ. 算定時の CLT 袖壁の軸力比

			(;	a) X	、方	可(、加ノ]万[司:	X1-	→X8))			
Y1		X1	X2	X2	X3	X3	X4	X4	X5	X5	X6	X6	X7	X7	X8
	6F	0.39	0.44	0.39	0.44	0.39	0.44	0.39	0.44	0.39	0.44	0.39	0.44	0.39	0.43
	5F	0.47	0.56	0.47	0.56	0.47	0.56	0.47	0.56	0.47	0.56	0.47	0.56	0.48	0.57
	4F	0.56	0.65	0.58	0.65	0.58	0.65	0.58	0.65	0.58	0.65	0.58	0.65	0.59	0.65
	3F	0.42	0.58	0.46	0.57	0.46	0.57	0.46	0.57	0.46	0.57	0.46	0.57	0.46	0.59
	2F	0.54	0.44	0.61	0.43	0.61	0.43	0.61	0.43	0.61	0.43	0.61	0.43	0.6	0.48
	1F	0.67	0.11	0.78	0.09	0.78	0.09	0.78	0.09	0.78	0.09	0.78	0.09	0.52	0.19
VO		V1	V0	V 2	V2	V2	V4	V4	VE	VE	VC	VC	VZ	VZ	VO
¥3		ΧI	λZ	λZ	83	83	Χ4	Χ4	ζX	72	70	70	Χ1	Χ1	79
	6F	0.39	0.43	0.39	0.44	0.39	0.44	0.39	0.44	0.39	0.44	0.39	0.44	0.39	0.42
	5F	0.47	0.56	0.47	0.56	0.47	0.56	0.47	0.56	0.47	0.56	0.47	0.56	0.48	0.54
	4F	0.57	0.65	0.58	0.65	0.58	0.65	0.58	0.65	0.58	0.65	0.58	0.65	0.59	0.65
	3F	0.43	0.58	0.37	0.57	0.46	0.57	0.46	0.57	0.46	0.57	0.46	0.56	0.46	0.59
	2F	0.54	0.44	0.61	0.43	0.61	0.43	0.61	0.43	0.61	0.43	0.61	0.43	0.6	0.48
	1F	0.67	0.11	0.79	0.09	0.78	0.09	0.78	0.09	0.78	0.09	0.78	0.09	0.76	0.19

(b) Y 方向(加力方向: Y1→Y3)

						•	•		-			-										
	Y1	Y2	Y2	Y3	X2		Y1	Y2	Y2	Y3	Х3		Y1	Y2	Y2	Y3	X4		Y1	Y2	Y2	Y3
6F	0.39	0.36	0.38	0.34		6F	0.36	0.42	0.26	0.41		6F	0.37	0.37	0.28	0.49		6F	0.38	0.38	0.27	0.49
5F	0.42	0.49	0.44	0.49		5F	0.46	0.49	0.45	0.49		5F	0.46	0.49	0.43	0.49		5F	0.47	0.49	0.44	0.49
4F	0.49	0.49	0.49	0.50		4F	0.49	0.49	0.49	0.49		4F	0.49	0.49	0.49	0.49		4F	0.49	0.49	0.49	0.49
3F	0.37	0.49	0.45	0.49		3F	0.38	0.50	0.48	0.50		3F	0.38	0.50	0.46	0.50		3F	0.38	0.50	0.47	0.50
2F	0.45	0.50	0.49	0.47		2F	0.47	0.50	0.50	0.50		2F	0.47	0.50	0.50	0.50		2F	0.47	0.50	0.50	0.50
1F	0.50	0.24	0.50	0.24		1F	0.50	0.23	0.50	0.24		1F	0.50	0.23	0.51	0.24		1F	0.50	0.23	0.50	0.24
											, ,											

表 3.1.37、表 3.1.38 に RC+CLT モデルの RC 柱と CLT 袖壁が負担する Ds 算定時の水平せん断力を 示す。CLT 袖壁が負担する水平せん断力は、X 方向では層せん断力の10%(1 階)~32%(6 階)、Y 方向では層せん断力の15%(1階)~34%(6階)となり、上階ほどCLT 袖壁のせん断負担が大きい 結果となった。また、CLT 袖壁の水平せん断力を、表 3.1.34、表 3.1.35 で示した CLT 袖壁の圧縮軸力

で除した値は、X 方向では最大で 0.29、Y 方向では最大で 0.31 と、3.1.3 (c)で想定した摩擦係数(0.4 ~0.5)を十分に下回っていることが分かるが、後述する保証設計では摩擦抵抗は考慮せず、滑り止めのみでせん断力の伝達が行えることを確かめている。

表 3.1.37 β算定時の RC 柱、CLT 袖壁の負担せん断力(X 方向(加力方向: X1→X8)、単位: kN)

(a) RC 柱

Y1		X1	X2	Х3	X4	X5	X6	X7	X8	Y3		X1	X2	Х3	X4	X5	X6	X7	X8
	6F	70	320	319	319	319	319	325	26		6F	66	316	315	316	316	316	321	21
	5F	302	553	551	551	551	551	554	335		5F	301	552	549	549	549	549	552	330
	4F	432	789	787	787	787	787	791	450		4F	439	794	791	791	791	790	795	450
	3F	485	935	931	932	932	931	937	518		3F	488	937	933	933	933	934	939	525
	2F	569	1109	1106	1106	1106	1106	1110	642		2F	575	1113	1111	1111	1111	1112	1116	640
	1F	555	1307	1294	1295	1297	1296	1291	1060		1F	619	1311	1297	1292	1293	1289	1284	1085

(b)	CLT	袖壁
··• /		

Y1		X1	X2	X2	Х3	Х3	X4	X4	X5	X5	X6	X6	X7	X7	X8
	6F	65	67	65	67	65	67	65	67	65	67	65	67	65	67
	5F	69	74	69	74	69	74	69	74	69	74	69	74	70	74
	4F	74	79	75	79	75	79	75	79	75	79	75	79	76	79
	3F	106	119	109	118	109	118	109	118	109	118	109	118	109	120
	2F	115	108	121	107	121	107	121	107	121	107	121	107	121	111
	1F	126	32	116	29	117	29	117	29	117	29	117	28	118	52

Y3		X1	X2	X2	Х3	Х3	X4	X4	X5	X5	X6	X6	X7	X7	X8
	6F	65	67	65	67	65	67	65	67	65	67	65	67	65	67
	5F	69	74	69	74	69	74	69	74	69	74	69	74	70	73
	4F	75	79	75	79	75	79	75	79	75	79	75	79	76	79
	3F	107	119	109	118	109	118	109	118	109	118	109	118	109	120
	2F	116	108	122	107	121	107	121	107	121	107	121	107	121	111
	1F	126	33	116	29	116	29	117	29	116	29	117	28	118	54

表 3.1.38 Δ。算定時の RC 柱、CLT 袖壁の負担せん断力(Y 方向(加力方向: Y1→Y3)、単位: kN)

(a) RC 柱

X1		Y1	Y2	Y3	X2		Y1	Y2	Y3	Х3		Y1	Y2	Y3	X4		Y1	Y2	Y3
	6F	117	379	37		6F	100	442	70		6F	101	423	70		6F	102	433	67
	5F	259	500	286		5F	300	543	358		5F	299	536	358		5F	298	539	358
	4F	349	637	355		4F	422	894	479		4F	423	890	479		4F	423	890	477
	3F	430	805	462		3F	501	997	538		3F	503	990	539		3F	503	993	538
	2F	495	878	622		2F	588	1130	706		2F	589	1122	706		2F	589	1127	705
	1F	405	923	979		1F	543	1113	1147		1F	557	1115	1154		1F	556	1107	1152

(b) CLT 袖壁

X1		Y1	Y2	Y2	Y3	X2		Y1	Y2	Y2	Y3	Х3		Y1	Y2	Y2	Y3	X4		Y1	Y2	Y2	Y3
	6F	76	73	75	71		6F	73	78	64	83		6F	74	74	66	83		6F	87	75	65	83
	5F	78	84	80	84		5F	82	84	81	84		5F	82	84	79	84		5F	82	84	80	84
	4F	84	84	84	84		4F	84	85	84	84		4F	84	85	84	84		4F	84	85	84	84
	3F	118	133	128	133		3F	120	135	132	134		3F	120	134	129	134		3F	120	134	131	134
	2F	128	135	134	131		2F	131	135	134	134		2F	131	135	134	134		2F	131	135	134	134
	1F	133	101	133	101		1F	133	101	133	101		1F	133	101	133	101		1F	133	101	133	101

表 3.1.39 に RC+CLT モデルの CLT 袖壁が負担する D_s算定時の平均せん断応力の和を示す。CLT 袖壁の平均せん断応力の最大値は、X 方向では 1~3 階(厚さ 210mm)で 1.00N/mm²、4~6 階(厚さ 150mm)で 0.88N/mm²、Y 方向では 1~3 階(厚さ 210mm)で 0.86N/mm²、4~6 階(厚さ 150mm)で 0.77N/mm²となり、せん断の基準強度(2.7N/mm²)に対して 3~4 割程度の負担に留まっている。

表 3.1.39 Δ。算定時の CLT 袖壁の平均せん断応力(単位: N/mm²)

(a) X 方向(加力方向: X1→X8)

			((a)	^ /]	111 1		ורער	нј.	VI.	× N 0)				
Y1		X1	X2	X2	Х3	Х3	X4	X4	X5	X5	X6	X6	X7	X7	X8
	6F	0.72	0.74	0.72	0.74	0.72	0.74	0.72	0.74	0.72	0.74	0.72	0.74	0.72	0.74
	5F	0.77	0.82	0.77	0.82	0.77	0.82	0.77	0.82	0.77	0.82	0.77	0.82	0.78	0.82
	4F	0.82	0.88	0.83	0.88	0.83	0.88	0.83	0.88	0.83	0.88	0.83	0.88	0.84	0.88
	3F	0.84	0.94	0.87	0.94	0.87	0.94	0.87	0.94	0.87	0.94	0.87	0.94	0.87	0.95
	2F	0.91	0.86	0.96	0.85	0.96	0.85	0.96	0.85	0.96	0.85	0.96	0.85	0.96	0.88
	1F	1.00	0.25	0.92	0.23	0.93	0.23	0.93	0.23	0.93	0.23	0.93	0.22	0.94	0.41
Y3		X1	X2	X2	Х3	Х3	X4	X4	X5	X5	X6	X6	Χ7	Χ7	X8
	6F	0.72	0.74	0.72	0.74	0.72	0.74	0.72	0.74	0.72	0.74	0.72	0.74	0.72	0.74
	5F	0.77	0.82	0.77	0.82	0.77	0.82	0.77	0.82	0.77	0.82	0.77	0.82	0.78	0.81
	4F	0.83	0.88	0.83	0.88	0.83	0.88	0.83	0.88	0.83	0.88	0.83	0.88	0.84	0.88
	3F	0.85	0.94	0.87	0.94	0.87	0.94	0.87	0.94	0.87	0.94	0.87	0.94	0.87	0.95
	2F	0.92	0.86	0.97	0.85	0.96	0.85	0.96	0.85	0.96	0.85	0.96	0.85	0.96	0.88
	1F	1.00	0.26	0.92	0.23	0.92	0.23	0.93	0.23	0.92	0.23	0.93	0.22	0.94	0.43

(b) Y 方向(加力方向: Y1→Y3)

1		Y1	Y2	Y2	Y3
	6F	0.68	0.65	0.67	0.63
	5F	0.69	0.75	0.71	0.75
	4F	0.75	0.75	0.75	0.75
	3F	0.75	0.84	0.81	0.84
	2F	0.81	0.86	0.85	0.83
	1F	0.84	0.64	0.84	0.64

Х

	Y1	Y2	Y2	Y3
6F	0.65	0.69	0.57	0.74
5F	0.73	0.75	0.72	0.75
4F	0.75	0.76	0.75	0.75
3F	0.76	0.86	0.84	0.85
2F	0.83	0.86	0.85	0.85
1F	0.84	0.64	0.84	0.64

Х2

Х3		Y1	Y2	Y2	Y3	Χ4
	6F	0.66	0.66	0.59	0.74	
	5F	0.73	0.75	0.7	0.75	
	4F	0.75	0.76	0.75	0.75	
	3F	0.76	0.85	0.82	0.85	
	2F	0.83	0.86	0.85	0.85	
	1F	0.84	0.64	0.84	0.64	

	Y1	Y2	Y2	Y3
6F	0.77	0.67	0.58	0.74
5F	0.73	0.75	0.71	0.75
4F	0.75	0.76	0.75	0.75
3F	0.76	0.85	0.83	0.85
2F	0.83	0.86	0.85	0.85
1F	0.84	0.64	0.84	0.64

表 3.1.40 に RC+CLT モデルの RC はりが負担する D_s算定時のせん断力を示す。なお、表中の C は RC 柱フェイスに設けた曲げばね位置におけるせん断力を、W は CLT 袖壁フェイスに近い曲げばね位 置におけるせん断力を示している。RC はりに作用するせん断力は、同じスパン内でもヒンジ位置に よって異なる値となるため、それぞれの断面における保証設計が必要となる。

表 3.1.41 に RC+CLT モデルの RC はりが負担する *D*。算定時の曲げモーメントを示す。なお、表中 の C は RC 柱フェイスに設けた曲げばね位置における曲げモーメントを、W は CLT 袖壁フェイスに 近い曲げばね位置における曲げモーメントを示している。加力方向に対して圧縮側に CLT 袖壁が取り 付く最上階と加力方向に対して引張側に CLT 袖壁が取り付く最下階を除くと、CLT 袖壁フェイスに近 い曲げばね位置では、RC 柱フェイスに設けた曲げばね位置における曲げモーメントとほぼ同等かそ れ以上の曲げモーメントが作用しており、CLT 袖壁が RC はりの曲げモーメント分布に大きな影響を 及ぼしていることが分かる。

表 3.1.40 Δ。算定時の RC はりの負担せん断力(単位:kN)

(a) X 方向(加力方向: X1→X8)

Y1	ſ

Y3

Т

	X1-X2			X2-X3			Х3-	X4			X4-	-X5				
	С	W	W	С	С	W	W	С	С	W	W	С	С	W	W	С
RF	-353	-82	-266	38	-337	-66	-264	41	-337	-66	-264	41	-337	-66	-264	41
6F	-241	-197	-314	-233	-226	-178	-304	-235	-226	-178	-304	-235	-226	-178	-304	-235
5F	-317	-261	-385	-332	-309	-238	-371	-317	-309	-238	-371	-317	-309	-238	-371	-317
4F	-452	-393	-520	-353	-447	-362	-498	-341	-447	-362	-498	-341	-447	-362	-498	-341
3F	-547	-431	-562	-726	-557	-398	-538	-704	-557	-398	-538	-704	-557	-398	-538	-704
2F	-554	-414	-544	-829	-567	-380	-520	-907	-567	-380	-520	-907	-567	-380	-520	-907
1F	116	-608	-858	-938	312	-458	-726	-815	293	-477	-745	-834	299	-472	-740	-829
	Y1			X5-	X6			X6-	-X7			X7-	-X8		1	
			С	W	W	С	С	W	W	С	С	W	W	С		
		RF	-337	-66	-264	41	-337	-66	-264	41	-355	-81	-266	34		
		6F	-226	-178	-304	-235	-226	-178	-304	-235	-249	-197	-314	-228		
		5F	-309	-238	-371	-317	-309	-238	-371	-317	-335	-261	-385	-333		
		4F	-447	-362	-498	-341	-447	-362	-498	-341	-472	-393	-521	-336		
		3F	-557	-398	-538	-704	-557	-398	-538	-704	-583	-432	-563	-701		
		2F	-567	-380	-520	-907	-567	-380	-520	-907	-582	-418	-548	-886		
		1F	287	-484	-752	-841	339	-431	-699	-762	75	-695	-944	-1109		
												_				
	,	X1	X2			X2-	-X3			Х3-	X4			X4-	-X5	
	С	X1- W	X2 W	С	С	X2- W	-X3 W	С	С	X3- W	X4 W	С	С	X4- W	-X5 W	С
RF	C -362	X1- W -90	-X2 W -258	C 40	C -341	X2- W -70	-X3 W -260	C 43	C -341	X3- W -70	-X4 W -260	C 43	C -341	X4- W -70	-X5 W -260	C 43
RF 6F	C -362 -247	X1- W -90 -199	-X2 W -258 -314	C 40 -229	C -341 -228	X2- W -70 -180	-X3 W -260 -302	C 43 -222	C -341 -228	X3- W -70 -180	-X4 W -260 -302	C 43 -222	C -341 -228	X4- W -70 -180	-X5 W -260 -302	C 43 -222
RF 6F 5F	C -362 -247 -327	X1- W -90 -199 -263	-X2 W -258 -314 -385	C 40 -229 -330	C -341 -228 -311	X2- W -70 -180 -241	-X3 W -260 -302 -369	C 43 -222 -313	C -341 -228 -311	X3- W -70 -180 -241	-X4 W -260 -302 -369	C 43 -222 -313	C -341 -228 -311	X4- W -70 -180 -241	-X5 W -260 -302 -369	C 43 -222 -313
RF 6F 5F 4F	C -362 -247 -327 -458	X1- W -90 -199 -263 -395	-X2 W -258 -314 -385 -520	C 40 -229 -330 -352	C -341 -228 -311 -450	X2- W -70 -180 -241 -364	-X3 W -260 -302 -369 -498	C 43 -222 -313 -339	C -341 -228 -311 -450	X3- W -70 -180 -241 -364	-X4 W -260 -302 -369 -498	C 43 -222 -313 -339	C -341 -228 -311 -450	X4- W -70 -180 -241 -364	-X5 W -260 -302 -369 -498	C 43 -222 -313 -339
RF 6F 5F 4F 3F	C -362 -247 -327 -458 -548	X1- W -90 -199 -263 -395 -434	-X2 W -258 -314 -385 -520 -562	C 40 -229 -330 -352 -725	C -341 -228 -311 -450 -561	X2- W -70 -180 -241 -364 -400	X3 W -260 -302 -369 -498 -536	C 43 -222 -313 -339 -701	C -341 -228 -311 -450 -561	X3- W -70 -180 -241 -364 -400	X4 W -260 -302 -369 -498 -536	C 43 -222 -313 -339 -701	C -341 -228 -311 -450 -561	X4- W -70 -180 -241 -364 -400	-X5 W -260 -302 -369 -498 -536	C 43 -222 -313 -339 -701
RF 6F 5F 4F 3F 2F	C -362 -247 -327 -458 -548 -549	X1- W -90 -199 -263 -395 -434 -417	-X2 W -258 -314 -385 -520 -562 -545	C 40 -229 -330 -352 -725 -928	C -341 -228 -311 -450 -561 -571	X2- W -70 -180 -241 -364 -400 -382	X3 W -260 -302 -369 -498 -536 -518	C 43 -222 -313 -339 -701 -905	C -341 -228 -311 -450 -561 -571	X3- W -70 -180 -241 -364 -400 -382	X4 -260 -302 -369 -498 -536 -518	C 43 -222 -313 -339 -701 -905	C -341 -228 -311 -450 -561 -571	X4- W -70 -180 -241 -364 -400 -382	-X5 W -260 -302 -369 -498 -536 -518	C 43 -222 -313 -339 -701 -905
RF 6F 5F 4F 3F 2F 1F	C -362 -247 -327 -458 -548 -549 99	X1- W -90 -199 -263 -395 -434 -417 -665	X2 W -258 -314 -385 -520 -562 -545 -895	C 40 -229 -330 -352 -725 -928 -981	C -341 -228 -311 -450 -561 -571 305	X2- W -70 -180 -241 -364 -400 -382 -466	-X3 W -260 -302 -369 -498 -536 -518 -709	C 43 -222 -313 -339 -701 -905 -800	C -341 -228 -311 -450 -561 -571 305	X3- W -70 -180 -241 -364 -400 -382 -466	X4 -260 -302 -369 -498 -536 -518 -709	C 43 -222 -313 -339 -701 -905 -800	C -341 -228 -311 -450 -561 -571 305	X4- W -70 -180 -241 -364 -400 -382 -466	-X5 W -260 -302 -369 -498 -536 -518 -709	C 43 -222 -313 -339 -701 -905 -800
RF 6F 5F 4F 3F 2F 1F	C -362 -247 -327 -458 -548 -549 99 Y3	X1- W -90 -199 -263 -395 -434 -417 -665	-X2 W -258 -314 -385 -520 -562 -545 -895	C 40 -229 -330 -352 -725 -928 -981 X5	C -341 -228 -311 -450 -561 -571 305 -X6	X2- W -70 -180 -241 -364 -400 -382 -466	-X3 W -260 -302 -369 -498 -536 -536 -518 -709	C 43 -222 -313 -339 -701 -905 -800 X6	C -341 -228 -311 -450 -561 -571 305	X3- W -70 -180 -241 -364 -400 -382 -466	-X4 W -260 -302 -369 -498 -536 -518 -709	C 43 -222 -313 -339 -701 -905 -800 X7	C -341 -228 -311 -450 -561 -571 305	X4- W -70 -180 -241 -364 -400 -382 -466	-X5 W -260 -302 -369 -498 -536 -518 -709	C 43 -222 -313 -339 -701 -905 -800
RF 6F 5F 4F 3F 2F 1F	C -362 -247 -327 -458 -548 -549 99 Y3	X1- W -90 -199 -263 -395 -434 -417 -665	-X2 W -258 -314 -385 -520 -562 -545 -895 C	C 40 -229 -330 -352 -725 -928 -981 X5 W	C -341 -228 -311 -450 -561 -571 305 -X6 W	X2- W -70 -180 -241 -364 -400 -382 -466 C	-X3 W -260 -302 -369 -498 -536 -518 -518 -709 C	C 43 -222 -313 -339 -701 -905 -800 X6- W	C -341 -228 -311 -450 -561 -571 305 -X7 W	X3- W -70 -241 -364 -400 -382 -466 C	-X4 W -260 -302 -369 -498 -536 -518 -709 C	C 43 -222 -313 -339 -701 -905 -800 X7 ⁻ W	C -341 -228 -311 -450 -561 -571 305 -X8 W	X4- W -70 -180 -241 -364 -400 -382 -466 C	-X5 W -260 -302 -369 -498 -536 -518 -709	C 43 -222 -313 -339 -701 -905 -800
RF 6F 5F 4F 3F 2F 1F	C -362 -247 -327 -458 -548 -549 99 Y3	X1- W -90 -199 -263 -395 -434 -417 -665 RF	-X2 W -258 -314 -385 -520 -562 -545 -895 C -341	C 40 -229 -330 -352 -725 -928 -981 X5 W -70	C -341 -228 -311 -450 -561 -571 305 -X6 W -260	X2- W -70 -241 -364 -400 -382 -466 C 43	X3 W -260 -302 -369 -498 -536 -518 -709 C C -341	C 43 -222 -313 -339 -701 -905 -800 X6 W -70	C -341 -228 -311 -450 -561 -571 305 -X7 W -260	X3- W -70 -241 -364 -400 -382 -466 C 43	X4 W -260 -302 -369 -498 -536 -518 -709 C C -350	C 43 -222 -313 -339 -701 -905 -800 X7 ⁻ W -85	C -341 -228 -311 -450 -561 -571 305 -X8 W -262	X4- W -70 -241 -364 -400 -382 -466 C 32	-X5 W -260 -302 -369 -498 -536 -518 -709	C 43 -222 -313 -339 -701 -905 -800
RF 6F 5F 4F 3F 2F 1F	C -362 -247 -327 -458 -548 -549 99 Y3	X1- W -90 -263 -395 -434 -417 -665 RF 6F	-X2 W -258 -314 -385 -520 -562 -545 -895 C -341 -228	C 40 -229 -330 -352 -725 -928 -981 X5 W -70 -180	C -341 -228 -311 -450 -561 -571 305 -X6 W -260 -302	X2- W -70 -180 -241 -364 -400 -382 -466 -466 -43 -222	X3 W -260 -302 -369 -498 -536 -518 -709 C C -341 -228	C 43 -222 -313 -339 -701 -905 -800 X6 W -70 -700 -180	C -341 -228 -311 -450 -561 -571 305 -X7 W -260 -302	X3- W -70 -241 -364 -400 -382 -466 C 43 -222	X4 W -260 -302 -369 -498 -536 -518 -709 C -350 -250	C 43 -222 -313 -339 -701 -905 -800 X7 W -855 -198	C -341 -228 -311 -450 -561 -571 305 -X8 W -262 -312	X4- W -70 -241 -364 -400 -382 -466 C 32 -236	-X5 W -260 -302 -369 -498 -536 -518 -709	C 43 -222 -313 -339 -701 -905 -800
RF 6F 5F 4F 3F 2F 1F	C -362 -247 -327 -458 -548 -549 99 Y3	X1- W -90 -263 -395 -434 -417 -665 RF 6F 5F	-X2 W -258 -314 -385 -520 -562 -545 -895 -895 -895 -341 -228 -311	C 40 -229 -330 -352 -725 -928 -981 X5 W -70 -180 -241	C -341 -228 -311 -450 -561 -571 305 -X6 W -260 -302 -369	X2- W -70 -241 -364 -400 -382 -466 C 43 -222 -313	X3 W -260 -302 -369 -498 -536 -518 -709 C C -341 -228 -311	C 43 -222 -313 -339 -701 -905 -800 X6 - X6 - X6 - 241	C -341 -228 -311 -450 -561 -571 305 -X7 W -260 -302 -369	X3- W -70 -241 -364 -400 -382 -466 C 43 -222 -313	X4 W -260 -302 -369 -498 -536 -518 -709 C -709 C -350 -250 -337	C 43 -222 -313 -339 -701 -905 -800 X7 - 800 X7 - 85 -198 -261	C -341 -228 -311 -450 -561 -571 305 -X8 W -262 -312 -381	X4- W -70 -241 -364 -400 -382 -466 C 32 -236 -312	×5 W -260 -302 -369 -498 -536 -518 -709	C 43 -222 -313 -339 -701 -905 -800
RF 6F 5F 4F 3F 2F 1F	C -362 -247 -458 -548 -549 99 Y3	X1- W -90 -199 -263 -395 -434 -417 -665 RF 6F 5F 4F	X2 W -258 -314 -385 -520 -562 -545 -895 C -341 -228 -311 -450	C 40 -229 -330 -352 -725 -928 -981 X5 -981 X5 -70 -180 -241 -364	C -341 -228 -311 -551 -571 305 -X6 W -260 -302 -369 -498	X2- W -70 -180 -241 -364 -400 -382 -466 -466 -382 -466 -382 -466 -332 -339	X3 W -260 -302 -369 -498 -536 -518 -709 C -341 -228 -311 -450	C 43 -222 -313 -339 -701 -905 -800 X6 W -70 -180 -241 -364	C -341 -228 -311 -551 -571 305 -571 305 -X7 W -260 -302 -369 -498	X3-3- -70 -180 -241 -400 -382 -466 C 43 -222 -313 -339	X4 W -260 -302 -369 -498 -536 -518 -709 C -350 -250 -337 -473	C 43 -222 -313 -339 -701 -905 -800 X7.7 -800 X7.7 -85 -198 -261 -395	C -341 -228 -311 -551 -551 305 -551 305 -262 -312 -381 -519	X4- W -70 -180 -241 -364 -400 -382 -466 C 32 -236 -312 -332	×5 W -260 -302 -369 -498 -536 -518 -709	C 43 -222 -313 -339 -701 -905 -800
RF 6F 5F 4F 3F 2F 1F	C -362 -247 -458 -548 -549 99 Y3	X1- W -90 -263 -395 -434 -417 -665 RF 6F 5F 4F 3F	X2 W -258 -314 -562 -562 -562 -562 -565 -895 C -341 -228 -311 -450 -561	C 40 -229 -330 -352 -725 -928 -981 X5 W -70 -180 -241 -364 -400	C -341 -228 -311 -561 -571 305 -260 -302 -369 -498 -536	X2- W -70 -180 -241 -364 -400 -382 -466 C 43 -222 -313 -339 -701	X3 W -260 -302 -498 -536 -518 -518 -709 C -341 -228 -311 -450 -561	C 43 -222 -313 -339 -701 -905 -800 X66 -800 -180 -241 -364 -400	C -341 -228 -311 -561 -571 305 -260 -302 -302 -369 -498 -536	X3- -70 -180 -241 -364 -400 -382 -466 -43 -222 -313 -339 -701	X4 W -260 -302 -498 -536 -518 -518 -709 C -350 -250 -337 -473 -585	C 43 -222 -313 -339 -701 -905 -800 X7. W -85 -198 -261 -395 -434	C -341 -228 -311 -561 -571 305 -262 -312 -381 -519 -561	X4- W -70 -180 -241 -364 -400 -382 -466 C 32 -236 -312 -332 -332 -696	X5 W -260 -302 -498 -536 -518 -709	C 43 -222 -313 -339 -701 -905 -800
RF 6F 5F 4F 3F 2F 1F	C -362 -247 -327 -458 -548 -549 99 Y3	X1- W -90 -263 -395 -434 -417 -665 RF 6F 5F 4F 3F 2F	X2 W -258 -314 -385 -520 -562 -545 -895 -895 -895 -341 -228 -311 -450 -561 -571	C 40 -229 -330 -352 -725 -928 -981 X5 -981 X5 - W -70 -180 -241 -364 -400 -382	C -341 -228 -311 -551 -571 305 -561 -571 305 -260 -302 -369 -498 -536 -518	X2- W -70 -180 -241 -364 -400 -382 -466 C 43 -222 -313 -339 -701 -905	X3 W -260 -302 -369 -518 -518 -518 -709 C -311 -228 -311 -450 -561 -571	C 43 -222 -313 -339 -701 -905 -800 X66- -800 -180 -241 -364 -400 -382	C -341 -228 -311 -551 -571 305 -571 305 -X7 W -260 -302 -309 -498 -536 -518	X3- -70 -180 -241 -364 -400 -382 -466 -382 -466 -382 -382 -313 -339 -701 -905	X4 W -260 -302 -498 -518 -518 -518 -709 C -350 -250 -337 -473 -585 -584	C 43 -222 -313 -339 -701 -905 -800 X7- -800 X7- -800 X7- -800 -261 -395 -434 -420	C -341 -228 -311 -551 -571 305 -571 305 -262 -312 -312 -312 -311 -519 -561 -547	X44 W -70 -180 -241 -364 -400 -382 -466 -382 -236 -312 -332 -696 -881	X5 W -260 -302 -498 -536 -518 -709	C 43 -222 -313 -339 -701 -905 -800

(b) Y 方向(加力方向: Y1→Y3)

X1			Y1-	-Y2			Y2-	-Y3		X2			Y1-	-Y2			Y2-	-Y3	
		С	W	W	С	С	W	W	С			С	W	W	С	С	W	W	С
	RF	-491	-152	-323	-5	-440	-116	-290	9		RF	-462	-151	-266	-152	-301	-90	-362	66
	6F	-312	-293	-396	-288	-312	-270	-379	-255		6F	-356	-277	-358	-442	-388	-225	-404	-416
	5F	-363	-312	-421	-427	-328	-295	-411	-413		5F	-407	-394	-480	-631	-376	-358	-542	-551
	4F	-502	-429	-541	-314	-574	-399	-518	-280		4F	-579	-495	-581	-475	-651	-440	-623	-381
	3F	-570	-468	-582	-577	-500	-448	-569	-623		3F	-646	-534	-622	-774	-519	-505	-691	-707
	2F	-486	-426	-540	-914	-431	-431	-552	-885		2F	-523	-492	-580	-1099	-471	-477	-663	-1036
	1F	161	-561	-766	-1117	-47	-777	-958	-1315		1F	27	-698	-862	-1409	-73	-809	-1166	-1528
Х3			Y1-	-Y2			Y2	-Y3		X4			Y1-	-Y2			Y2	-Y3	
Х3		С	Y1 W	Y2 W	С	С	Y2 W	-Y3 W	С	X4		С	Y1- W	Y2 W	С	С	Y2 W	-Y3 W	С
X3	RF	C -470	Y1- W -152	-Y2 W -268	C -149	C -263	Y2- W -26	-Y3 W -365	C -14	X4	RF	C -482	Y1- W -151	-Y2 W -266	C -150	C -282	¥2- W -58	-Y3 W -354	C 73
Х3	RF 6F	C -470 -359	Y1- W -152 -285	-Y2 W -268 -365	C -149 -388	C -263 -322	Y2- W -26 -200	-Y3 W -365 -407	C -14 -354	X4	RF 6F	C -482 -354	Y1- W -151 -290	-Y2 W -266 -370	C -150 -406	C -282 -362	Y2- W -58 -214	-Y3 W -354 -397	C 73 -409
X3	RF 6F 5F	C -470 -359 -409	Y1- W -152 -285 -398	-Y2 W -268 -365 -484	C -149 -388 -611	C -263 -322 -369	Y2- W -26 -200 -325	-Y3 W -365 -407 -537	C -14 -354 -546	X4	RF 6F 5F	C -482 -354 -404	Y1- W -151 -290 -398	-Y2 W -266 -370 -483	C -150 -406 -616	C -282 -362 -373	Y2- W -58 -214 -344	-Y3 W -354 -397 -532	C 73 -409 -542
Х3	RF 6F 5F 4F	C -470 -359 -409 -585	Y1- W -152 -285 -398 -499	-Y2 W -268 -365 -484 -584	C -149 -388 -611 -456	C -263 -322 -369 -600	Y2- W -26 -200 -325 -412	-Y3 W -365 -407 -537 -623	C -14 -354 -546 -381	X4	RF 6F 5F 4F	C -482 -354 -404 -584	Y1- W -151 -290 -398 -498	-Y2 W -266 -370 -483 -583	C -150 -406 -616 -460	C -282 -362 -373 -630	Y2- W -58 -214 -344 -427	-Y3 W -354 -397 -532 -615	C 73 -409 -542 -374
Х3	RF 6F 5F 4F 3F	C -470 -359 -409 -585 -651	Y1- W -152 -285 -398 -499 -538	-Y2 W -268 -365 -484 -584 -626	C -149 -388 -611 -456 -754	C -263 -322 -369 -600 -512	Y2- W -26 -200 -325 -412 -471	-Y3 W -365 -407 -537 -623 -685	C -14 -354 -546 -381 -702	X4	RF 6F 5F 4F 3F	C -482 -354 -404 -584 -650	Y1- W -151 -290 -398 -498 -537	-Y2 W -266 -370 -483 -583 -625	C -150 -406 -616 -460 -759	C -282 -362 -373 -630 -518	Y2- W -58 -214 -344 -427 -490	-Y3 W -354 -397 -532 -615 -680	C 73 -409 -542 -374 -697
Х3	RF 6F 5F 4F 3F 2F	C -470 -359 -409 -585 -651 -525	Y1- W -152 -285 -398 -499 -538 -496	-Y2 W -268 -365 -484 -584 -584 -626 -584	C -149 -388 -611 -456 -754 -1080	C -263 -322 -369 -600 -512 -445	Y2- W -26 -200 -325 -412 -471 -445	-Y3 W -365 -407 -537 -623 -685 -685	C -14 -354 -546 -381 -702 -1032	X4	RF 6F 5F 4F 3F 2F	C -482 -354 -404 -584 -650 -524	Y1- W -151 -290 -398 -498 -537 -495	-Y2 W -266 -370 -483 -583 -625 -583	C -150 -406 -616 -460 -759 -1084	C -282 -362 -373 -630 -518 -460	Y2- W -58 -214 -344 -427 -490 -463	-Y3 W -354 -397 -532 -615 -680 -654	C 73 -409 -542 -374 -697 -1026

表 3.1.41 D。算定時の RC はりの負担モーメント(単位: kNm)

(a) X 方向(加力方向: X1→X8)

X3-X4

-1060 -1082 1116 1165

-1053 -1084 1032 1213

X4-X5

587 561

728 736

1051 1038

1444 1964

F

429

Н Н

-329 447

X2-X3

		F	Н	Н	F	F	Н	Н	F	F	Н	Н	F	F	Н
	RF	-350	-320	446	429	-353	-329	447	429	-353	-329	447	429	-353	-329
	6F	-502	-542	584	562	-500	-547	587	561	-500	-547	587	561	-500	-547
	5F	-672	-688	733	737	-669	-695	728	736	-669	-695	728	736	-669	-695
	4F	-968	-963	1045	1039	-963	-971	1051	1038	-963	-971	1051	1038	-963	-971
	3F	-1067	-1074	1110	1167	-1060	-1082	1116	1165	-1060	-1082	1116	1165	-1060	-1082
	2F	-1052	-1081	1028	1215	-1053	-1084	1032	1213	-1053	-1084	1032	1213	-1053	-1084
	1F	-1779	-1765	1461	2059	-1272	-1272	1445	1956	-1361	-1420	1453	1977	-1275	-1404
				1											
		Y1			X5	-X6			X6-	-X7			X7-	-X8	
				F	Н	Н	F	F	Н	Н	F	F	Н	Н	F
			RF	-353	-329	447	429	-353	-329	447	429	-349	-318	446	430
			6F	-500	-547	587	561	-500	-547	587	561	-502	-540	585	562
			5F	-669	-695	728	736	-669	-695	728	736	-672	-687	733	738
			4F	-963	-971	1051	1038	-963	-971	1051	1038	-966	-962	1049	1038
			3F	-1060	-1082	1116	1165	-1060	-1082	1116	1165	-1065	-1073	1115	1163
			2F	-1053	-1084	1032	1213	-1053	-1084	1032	1213	-1056	-1076	1050	1205
			1F	-1291	-1412	1491	2020	-1241	-1241	1260	1752	-1437	-1415	2191	2867
Г			V1	V 2			VO	VO				V/A		1	VA
			X1-	72			X2-	•83			X3	-74			X4
L		F	Н	Н	F	F	Н	Н	F	F	Н	Н	F	F	Н
	RF	-350	-315	448	429	-351	-326	448	423	-351	-326	448	423	-351	-326
_															

Y1 X1-X2

							,									
		X1-	-X2			X2-	-X3			Х3-	-X4			X4-	-X5	
	F	Н	Н	F	F	Н	Н	F	F	Н	Н	F	F	Н	Н	F
RF	-350	-315	448	429	-351	-326	448	423	-351	-326	448	423	-351	-326	448	423
6F	-503	-541	584	562	-500	-546	588	561	-500	-546	588	561	-500	-546	588	561
5F	-673	-688	734	737	-670	-694	739	736	-670	-694	739	736	-670	-694	739	736
4F	-968	-963	1046	1039	-964	-970	1052	1038	-964	-970	1052	1038	-964	-970	1052	1038
3F	-1067	-1075	1110	1167	-1061	-1081	1117	1165	-1061	-1081	1117	1165	-1061	-1081	1117	1165
2F	-1051	-1082	1029	1215	-1054	-1083	1032	1212	-1054	-1083	1032	1212	-1054	-1083	1032	1212
1F	-1962	-1957	1417	2095	-1184	-1317	1445	1945	-1184	-1317	1445	1945	-1184	-1317	1445	1945
	Y3			X5	-X6			X6	-X7			X7	-X8		1	

	X5-X6					X6-	-X7		X7-X8			
	ш	Η	Τ	ш	F	Η	Η	F	F	Η	Η	F
RF	-351	-326	448	423	-351	-326	448	423	-348	-316	446	430
6F	-500	-546	588	561	-500	-546	588	561	-502	-540	583	563
5F	-670	-694	739	736	-670	-694	739	736	-671	-686	727	727
4F	-964	-970	1052	1038	-964	-970	1052	1038	-966	-961	1050	1038
3F	-1061	-1081	1117	1165	-1061	-1081	1117	1165	-1065	-1072	1116	1162
2F	-1054	-1083	1032	1212	-1054	-1083	1032	1212	-1057	-1076	1052	1204
1F	-1184	-1317	1445	1945	-1184	-1317	1445	1945	-1464	-1422	2266	2950

(b) Y 方向(加力方向: Y1→Y3)

X2

Χ4

X	1
Λ	Ŧ.

RF

6F

5F

4F

3F

2F

1F

-786 -795

-1338 -1398

Y3

Y2-Y3 Y1-Y2 F Н Н F Н Н F F -321 -217 411 429 -312 -231 421 430 -503 -490 519 551 -488 -483 540 560 -562 -538 540 606 -547 -540 571 632 -735 -681 767 786 -710 -655 785 789 -813 -772 800 852 -767 -768 827 892

> 814 -755

1269 -897 -784

759 926

-789 1922 2770

646

563

		Y1-	·Y2			Y2-	-Y3	
	F	Н	Н	F	F	Н	Н	F
RF	-331	-234	434	541	-315	-270	512	511
6F	-515	-496	490	587	-475	-451	567	627
5F	-745	-689	663	841	-726	-689	744	880
4F	-872	-779	882	994	-829	-743	940	1001
3F	-962	-886	897	1053	-904	-886	1000	1121
2F	-932	-915	740	1009	-894	-900	900	1131
1F	-1838	-1790	626	1632	-1018	-885	2195	3212

Х3

		Y1-	Y2			Y2-	-Y3	
	F	Н	Н	F	F	Н	Н	F
RF	-330	-230	442	541	-323	-309	510	510
6F	-516	-494	515	597	-486	-488	565	626
5F	-745	-688	676	844	-725	-697	748	880
4F	-872	-777	896	996	-836	-770	940	1000
3F	-963	-885	911	1056	-902	-894	1002	1119
2F	-632	-914	753	1012	-891	-912	903	1139
1F	-1889	-1826	640	1626	-1041	-887	2120	3219

		Y1-	Y2			Y2-	-Y3	
	F	Н	Н	F	F	Н	Н	F
RF	-328	-227	440	541	-319	-289	517	511
6F	-514	-519	505	594	-479	-466	571	627
5F	-744	-689	673	843	-726	-692	750	881
4F	-872	-777	892	996	-832	-754	943	999
3F	-963	-885	907	1055	-903	-889	1003	1111
2F	-932	-914	750	1011	-893	-905	906	1131
1F	-1888	-1832	618	1612	-1015	-869	2213	3221

(k) 許容応力度の確認1 (RC 柱)

ここでは、RC+CLT モデルについて、許容応力度の確認を行った結果を示す。長期荷重時と短期荷 重 ($C_0=0.2$)時に RC 柱に作用するせん断力の和を、文献[3.1.19]による RC 柱の損傷制御のための許 容せん断力(高強度せん断補強筋を用いている場合は評定の設計式によった)が上回ることを確認し ている。なお、X 方向では 1.53 倍以上、Y 方向では 1.94 倍以上の余裕度を確保している。また、長期 荷重時と短期荷重 ($C_0=0.2$)時に RC 柱に作用する軸力と曲げモーメントの組み合わせに対して、文 献[3.1.19]の付録 9 による RC 柱の許容曲げモーメントの条件を満足することを確認している。

(1) 許容応力度の確認2 (CLT 袖壁)

長期荷重時と短期荷重(C₀=0.2)時に CLT 袖壁に作用するせん断力の和を、CLT 袖壁の断面積に文献[3.1.7]による CLT のせん断の基準強度(S60-5-5、S60-5-7 のいずれの場合も 2.7N/mm²)の 2/3 倍(1.8N/mm²)を乗じた値が上回ることを確認している。なお、X、Y 方向のいずれについても 15 倍以上の余裕度を確保している。また、長期荷重時と短期荷重(C₀=0.2)時に CLT 袖壁に作用する軸力と曲げモーメントから求められる軸応力度と曲げ応力度の和に対して、文献[3.1.7]による CLT の曲げの基準強度(S60-5-5 で 9.7 N/mm²、S60-5-7 で 9.3N/mm²)の 2/3 倍を乗じた値が上回ることを確認している。なお、X 方向では 1.64 倍以上、Y 方向では 2.75 倍以上の余裕度を確保している。

(m) 許容応力度の確認3 (RC はり)

長期荷重時に RC はりに作用するせん断力を、文献[3.1.19]による RC はりの使用性確保のための許容せん断力 (せん断ひび割れを許容しない場合) が上回ることを確認している。なお、X 方向では 2.03 倍以上、Y 方向では 1.28 倍以上の余裕度が確保されていた。また、長期荷重時に RC はりに作用する曲げモーメントに対して、文献[3.1.19]による RC はりの許容曲げモーメントが上回ることを確認している。なお、X 方向では、はり端で 1.41 倍以上、スパン中央で 2.89 倍以上、Y 方向では、はり端で 1.10 倍以上、スパン中央で 2.04 倍以上の余裕度を確保している。

長期荷重時と短期荷重($C_0=0.2$)時に RC はりに作用するせん断力を、文献[3.1.19]による RC はりの損傷制御のための許容せん断力(高強度せん断補強筋を用いている場合は評定の設計式によった)が上回ることを確認している。なお、X 方向では 1.60 倍以上、Y 方向では 1.66 倍以上の余裕度を確保している。また、長期荷重時と短期荷重($C_0=0.2$)時に RC はりに作用する曲げモーメントに対して、文献[3.1.19]による RC はりの許容曲げモーメントが上回ることを確認している。なお、X 方向では 1.05 倍以上、Y 方向では 1.07 倍以上の余裕度を確保している。

RC はりについては、長期、短期とも曲げモーメントに対する余裕度が小さいが、これは全体崩壊形が形成されやすいように、本設計例では RC はりの主筋量を少なく設定しているためである。

(n) 部材種別の判定1(RC 柱、CLT 袖壁を RC 袖壁付き柱の一部とみなす場合)

ここでは、RC+CLT モデルについて、部材種別の判定を行った結果を示す。3.1.6(a)で示した表 3.1.3 に基づいて、部材種別判定を行うと、塑性ヒンジが形成される CLT 袖壁付きの RC 柱の部材種別は、 以下の検討より FC と判定できる。

・h₀/D について

h₀/Dの値は、RC柱の断面が最も小さい6階でも、X方向で2200mm/(650mm+600mm) =1.76、

Y 方向で 2200mm/(650mm+750mm) =1.57 となる。RC 造の袖壁付き柱に準じて、 h_0/D の 2M/(Q·d)への置き換えは行わないため、部材種別は FC に相当するものと判断する。

・ σ_0/F_c について

Υ1

表 3.1.34、表 3.1.35 で示した RC+CLT モデルの RC 柱と CLT 袖壁が負担する D_s 算定時の軸力について、CLT 袖壁に作用する軸力はいずれも圧縮となるため、ここでは、RC 柱に作用する軸力に(RC 柱に接する)CLT 袖壁の軸力を累加した値を用いて、 σ_0/F_c を計算した。表 3.1.42 に計算結果を示すが、いずれの RC 柱についても、 σ_0/F_c の値は 0.35 未満に収まっており、部材種別は FA に相当するものと判断する。

表 3.1.42 & 算定時の RC 柱の *の*₀/*F*。

	(a)	X方向	(加力方向	:	X1→X8)
--	-----	-----	-------	---	--------

	X1	X2	Х3	X4	X5	X6	X7	X8	Y3		X1	X2	Х3	X4	X5	X6	X7	X8
6F	0.01	0.03	0.03	0.03	0.03	0.03	0.03	0.03		6F	0.01	0.03	0.03	0.03	0.03	0.03	0.03	0.04
5F	0.01	0.06	0.06	0.06	0.06	0.06	0.06	0.06		5F	0.02	0.06	0.06	0.06	0.06	0.06	0.06	0.07
4F	0.01	0.09	0.09	0.09	0.09	0.09	0.09	0.10		4F	0.03	0.10	0.09	0.09	0.09	0.09	0.09	0.12
3F	0.01	0.12	0.11	0.11	0.11	0.11	0.11	0.14		3F	0.03	0.11	0.12	0.11	0.11	0.12	0.11	0.16
2F	0.00	0.13	0.13	0.13	0.13	0.13	0.12	0.17		2F	0.03	0.13	0.13	0.13	0.13	0.13	0.12	0.18
1F	0.00	0.15	0.15	0.15	0.15	0.15	0.13	0.20		1F	0.03	0.16	0.15	0.15	0.15	0.15	0.14	0.22

(b) Y 方向(加力方向: Y1→Y3)

X1		Y1	Y2	Y3	X2		Y1	Y2	Y3	Х3		Y1	Y2	Y3	X4		Y1	Y2	Y3
	6F	0.00	0.03	0.04		6F	0.01	0.04	0.04		6F	0.01	0.04	0.05		6F	0.01	0.04	0.05
	5F	-0.01	0.04	0.08		5F	0.00	0.05	0.08		5F	0.01	0.06	0.09		5F	0.01	0.05	0.09
	4F	-0.02	0.06	0.12		4F	-0.01	0.07	0.13		4F	0.00	0.07	0.14		4F	0.00	0.07	0.14
	3F	-0.03	0.08	0.16		3F	-0.02	0.09	0.17		3F	-0.02	0.09	0.17		3F	-0.02	0.08	0.17
	2F	-0.04	0.09	0.18		2F	-0.03	0.11	0.19		2F	-0.03	0.11	0.20		2F	-0.03	0.10	0.20
	1F	-0.05	0.10	0.21		1F	-0.04	0.11	0.23		1F	-0.04	0.12	0.24		1F	-0.04	0.11	0.24

・pt について

本設計例では、一部の RC 柱の引張鉄筋比 pt が 0.8%を上回っているが、後述する保証設計において、 荒川 mean 式によるせん断余裕度の確認を行い、付着割裂破壊に対する安全性の検討を行っていることから、部材種別は FA に相当するものと判断する。

なお、図 3.1.85 で示したように、本設計例では、層間変形角 1/33rad と比較的大きい変形状態で D_s 算定用の応力を求めていることから、安全側の配慮として、 D_s 算定時に RC 柱の一端に塑性ヒンジが 形成される 1 階の C1~C4 柱、6 階の C3 柱については、文献[3.1.2]による付着信頼強度が設計用付着 応力度を上回ることを確認している。この際、主筋の応力度の差 $\Delta \sigma$ には $\sigma_y + \sigma_{yu}$ (σ_y : 主筋の信頼強 度算定用強度、 σ_{yu} : 主筋の上限強度算定用強度)を用いた。

・ τ_u/F_c について

表 3.1.37、表 3.1.38 で示した RC+CLT モデルの RC 柱と CLT 袖壁が負担する D_s 算定時の水平せん 断力について、RC 柱に作用する水平せん断力に(RC 柱に接する)CLT 袖壁の水平せん断力を累加し た値を用いて、 τ_u/F_c を計算した。表 3.1.42 に計算結果を示すが、いずれの RC 柱についても、 τ_u/F_c の 値は 0.10 未満に収まっており、部材種別は FA に相当するものと判断する。

表 3.1.43 *D*。算定時の RC 柱の *T*u/*F*c

Y3

(a) X 方向(加力方向: X1→X8)

Y1		X1	X2	Х3	X4	X5	X6	X7	X8
	6F	0.01	0.05	0.05	0.05	0.05	0.05	0.05	0.01
	5F	0.03	0.06	0.06	0.06	0.06	0.06	0.06	0.04
	4F	0.04	0.08	0.08	0.08	0.08	0.08	0.08	0.05
	3F	0.05	0.09	0.09	0.09	0.09	0.09	0.09	0.05
	2F	0.05	0.09	0.09	0.09	0.09	0.09	0.09	0.05
	1F	0.04	0.09	0.09	0.09	0.09	0.09	0.09	0.07

	X1	X2	Х3	X4	X5	X6	X7	X8
6F	0.01	0.05	0.05	0.05	0.05	0.05	0.05	0.01
5F	0.03	0.06	0.06	0.06	0.06	0.06	0.06	0.03
4F	0.04	0.08	0.08	0.08	0.08	0.08	0.08	0.05
3F	0.05	0.09	0.09	0.09	0.09	0.09	0.09	0.05
2F	0.05	0.09	0.09	0.09	0.09	0.09	0.09	0.05
1F	0.05	0.09	0.09	0.09	0.09	0.09	0.09	0.07

(b) Y 方向(加力方向: Y1→Y3)

X1		Y1	Y2	Y3	X2		Y1	Y2	Y3	Х3		Y1	Y2	Y3	X4		
	6F	0.02	0.05	0.01		6F	0.02	0.06	0.02		6F	0.02	0.06	0.02		6F	(
	5F	0.03	0.06	0.03		5F	0.03	0.06	0.04		5F	0.03	0.06	0.04		5F	(
	4F	0.04	0.07	0.04		4F	0.04	0.08	0.05		4F	0.04	0.08	0.05		4F	(
	3F	0.04	0.08	0.05		3F	0.05	0.09	0.05		3F	0.05	0.08	0.05		3F	(
	2F	0.04	0.09	0.05		2F	0.05	0.09	0.06		2F	0.05	0.09	0.06		2F	(
	1F	0.03	0.08	0.07		1F	0.04	0.08	0.08		1F	0.04	0.08	0.08		1F	(

X4		Y1	Y2	Y3
	6F	0.02	0.06	0.02
	5F	0.03	0.06	0.04
	4F	0.04	0.08	0.05
	3F	0.05	0.09	0.05
	2F	0.05	0.09	0.06
	1F	0.04	0.08	0.08

(o) 部材種別の判定2(RC 柱、CLT 袖壁を RC 耐力壁とみなす場合)

3.1.6(b)で示した判定方法に基づいて、部材種別判定を行うと、以下の検討より、塑性ヒンジが形成 される RC 柱の部材種別は FA、CLT 袖壁の部材種別は WD と判定できる。

・ h₀/D について

*h*₀/*D*の値は、RC 柱の断面が最も大きい 1 階でも、X 方向で 2200mm/750mm=2.93、Y 方向で 2200mm/800mm=2.75 となり、2.5 を上回ることから、部材種別は FA と判定できる。

・ σ_0/F_c について

CLT 袖壁に作用する圧縮軸力は考慮しないため、表 3.1.42 で示した CLT 袖壁付き RC 柱として部材 種別を判定する場合よりも、の/F。の値が小さくなるため、部材種別は FA と判定できる。

・pt について

CLT 袖壁付き RC 柱として部材種別を判定する場合と同じ確認を行うことになるため、部材種別は FA と判定できる。

・ τ_u/F_c について

CLT 袖壁に作用する水平せん断力は考慮しないため、表 3.1.43 で示した CLT 袖壁付き RC 柱として 部材種別を判定する場合よりも、tu/Fcの値が小さくなるため、部材種別は FA と判定できる。

(p) 部材種別の判定3(RC はり)

表 3.1.44 に、表 3.1.40 で示した D_s 算定時の RC はりのせん断力を用いて、RC 柱フェイスに設けた 曲げばね位置(表中の C)と、CLT 袖壁フェイスに近い曲げばね位置(表中の W)における τ_u /F_cを 計算した結果を示す。いずれの曲げばね位置においても、 τ_u /F_cの値は 0.15 を十分に下回っており、 RC はりの部材種別は FA と判定できる。

表 3.1.44 *D*。算定時の RC はりの *c*_u/*F*_c

(a) X 方向(加力方向: X1→X8)

Y1			X1-	-X2			X2-	-X3			Х3-	X4			X4-	-X5	
		С	W	W	С	С	W	W	С	С	W	W	С	С	W	W	С
	RF	0.05	0.01	0.04	0.01	0.05	0.01	0.04	0.01	0.05	0.01	0.04	0.01	0.05	0.01	0.04	0.01
	6F	0.03	0.02	0.04	0.03	0.03	0.02	0.04	0.03	0.03	0.02	0.04	0.03	0.03	0.02	0.04	0.03
	5F	0.03	0.03	0.04	0.03	0.03	0.02	0.04	0.03	0.03	0.02	0.04	0.03	0.03	0.02	0.04	0.03
	4F	0.04	0.03	0.04	0.03	0.04	0.03	0.04	0.03	0.04	0.03	0.04	0.03	0.04	0.03	0.04	0.03
	3F	0.04	0.03	0.04	0.06	0.04	0.03	0.04	0.06	0.04	0.03	0.04	0.06	0.04	0.03	0.04	0.06
	2F	0.04	0.03	0.04	0.06	0.04	0.03	0.04	0.07	0.04	0.03	0.04	0.07	0.04	0.03	0.04	0.07
		Y1			X5	-X6			X6-	-X7			X7	-X8]	
				С	W	W	С	С	W	W	С	С	W	W	С	İ	
			RF	0.05	0.01	0.04	0.01	0.05	0.01	0.04	0.01	0.05	0.01	0.03	0.00	i	
			6F	0.03	0.02	0.04	0.03	0.03	0.02	0.04	0.03	0.03	0.02	0.04	0.03	1	
			5F	0.03	0.02	0.04	0.03	0.03	0.02	0.04	0.03	0.03	0.03	0.04	0.03	1	
			4F	0.04	0.03	0.04	0.03	0.04	0.03	0.04	0.03	0.04	0.03	0.04	0.03]	
			3F	0.04	0.03	0.04	0.06	0.04	0.03	0.04	0.06	0.05	0.03	0.04	0.06		
			2F	0.04	0.03	0.04	0.07	0.04	0.03	0.04	0.07	0.04	0.03	0.04	0.06	ļ	
Y3			X1	-X2			X2	-X3			X3	-X4			X4	-X5	
Y3		С	X1 W	-X2 W	С	С	X2 W	-X3 W	С	С	X3 W	-X4 W	С	С	X4 W	-X5 W	С
Y3	RF	C 0.05	X1 W 0.01	-X2 W 0.04	C 0.01	C 0.05	X2 W 0.01	-X3 W 0.04	C 0.01	C 0.05	X3 W 0.01	-X4 W 0.04	C 0.01	C 0.05	X4 W 0.01	-X5 W 0.04	C 0.01
Y3	RF 6F	C 0.05 0.03	X1 W 0.01 0.02	-X2 W 0.04 0.04	C 0.01 0.03	C 0.05 0.03	X2 W 0.01 0.02	-X3 W 0.04 0.04	C 0.01 0.03	C 0.05 0.03	X3 W 0.01 0.02	-X4 W 0.04 0.04	C 0.01 0.03	C 0.05 0.03	X4 W 0.01 0.02	-X5 W 0.04 0.04	C 0.01 0.03
Y3	RF 6F 5F	C 0.05 0.03 0.03	X1 W 0.01 0.02 0.03	-X2 W 0.04 0.04 0.04	C 0.01 0.03 0.03	C 0.05 0.03 0.03	X2 W 0.01 0.02 0.02	-X3 W 0.04 0.04 0.04	C 0.01 0.03 0.03	C 0.05 0.03 0.03	X3 W 0.01 0.02 0.02	-X4 W 0.04 0.04 0.04	C 0.01 0.03 0.03	C 0.05 0.03 0.03	X4 W 0.01 0.02 0.02	-X5 W 0.04 0.04 0.04	C 0.01 0.03 0.03
Y3	RF 6F 5F 4F	C 0.05 0.03 0.03 0.04	X1 W 0.01 0.02 0.03 0.03	-X2 W 0.04 0.04 0.04 0.04	C 0.01 0.03 0.03 0.03	C 0.05 0.03 0.03 0.04	X2 W 0.01 0.02 0.02 0.03	-X3 W 0.04 0.04 0.04 0.04	C 0.01 0.03 0.03 0.03	C 0.05 0.03 0.03 0.04	X3 W 0.01 0.02 0.02 0.03	-X4 W 0.04 0.04 0.04 0.04	C 0.01 0.03 0.03 0.03	C 0.05 0.03 0.03 0.04	X4 W 0.01 0.02 0.02 0.03	-X5 W 0.04 0.04 0.04 0.04	C 0.01 0.03 0.03 0.03
Y3	RF 6F 5F 4F 3F	C 0.05 0.03 0.03 0.04 0.04	X1 W 0.01 0.02 0.03 0.03 0.03	-X2 W 0.04 0.04 0.04 0.04 0.04	C 0.01 0.03 0.03 0.03 0.06	C 0.05 0.03 0.03 0.04 0.04	X2 W 0.01 0.02 0.02 0.03 0.03	-X3 W 0.04 0.04 0.04 0.04 0.04	C 0.01 0.03 0.03 0.03 0.06	C 0.05 0.03 0.03 0.04 0.04	X3 W 0.01 0.02 0.02 0.03 0.03	X4 W 0.04 0.04 0.04 0.04	C 0.01 0.03 0.03 0.03 0.06	C 0.05 0.03 0.03 0.04 0.04	X4 W 0.01 0.02 0.02 0.03 0.03	-X5 W 0.04 0.04 0.04 0.04 0.04	C 0.01 0.03 0.03 0.03 0.06
Y3	RF 6F 5F 4F 3F 2F	C 0.05 0.03 0.04 0.04 0.04	X1 0.01 0.02 0.03 0.03 0.03 0.03	-X2 W 0.04 0.04 0.04 0.04 0.04	C 0.01 0.03 0.03 0.03 0.06 0.07	C 0.05 0.03 0.04 0.04 0.04	X2 W 0.01 0.02 0.03 0.03 0.03	-X3 W 0.04 0.04 0.04 0.04 0.04 0.04	C 0.01 0.03 0.03 0.03 0.06 0.07	C 0.05 0.03 0.04 0.04 0.04	X3 W 0.01 0.02 0.03 0.03 0.03	X4 0.04 0.04 0.04 0.04 0.04 0.04	C 0.01 0.03 0.03 0.03 0.06 0.07	C 0.05 0.03 0.04 0.04 0.04	X4 W 0.01 0.02 0.03 0.03 0.03	-X5 W 0.04 0.04 0.04 0.04 0.04 0.04	C 0.01 0.03 0.03 0.03 0.06 0.07
Y3	RF 6F 5F 4F 3F 2F	C 0.05 0.03 0.04 0.04 0.04 V3	X1 0.01 0.02 0.03 0.03 0.03 0.03	-X2 W 0.04 0.04 0.04 0.04 0.04	C 0.01 0.03 0.03 0.03 0.06 0.07 X5	C 0.05 0.03 0.04 0.04 0.04	X2 W 0.01 0.02 0.03 0.03 0.03	-X3 W 0.04 0.04 0.04 0.04 0.04	C 0.01 0.03 0.03 0.03 0.06 0.07 X6	C 0.05 0.03 0.04 0.04 0.04	X3 W 0.01 0.02 0.03 0.03 0.03	-X4 W 0.04 0.04 0.04 0.04 0.04	C 0.01 0.03 0.03 0.03 0.06 0.07 X7	C 0.05 0.03 0.04 0.04 0.04	X4 W 0.01 0.02 0.03 0.03 0.03	-X5 W 0.04 0.04 0.04 0.04 0.04 0.04	C 0.01 0.03 0.03 0.03 0.06 0.07
Y3	RF 6F 5F 4F 3F 2F	C 0.05 0.03 0.04 0.04 0.04 V3	X1 W 0.01 0.02 0.03 0.03 0.03	-X2 W 0.04 0.04 0.04 0.04 0.04 0.04 C	C 0.01 0.03 0.03 0.06 0.07 X5 W	C 0.05 0.03 0.04 0.04 0.04 0.04	X2 W 0.01 0.02 0.03 0.03 0.03 C	-X3 W 0.04 0.04 0.04 0.04 0.04 0.04 0.04 C	C 0.01 0.03 0.03 0.06 0.07 X6	C 0.05 0.03 0.04 0.04 0.04 0.04	X3 W 0.01 0.02 0.03 0.03 0.03 C	X4 W 0.04 0.04 0.04 0.04 0.04 0.04 C	C 0.01 0.03 0.03 0.06 0.07 X7 W	C 0.05 0.03 0.04 0.04 0.04 0.04	X4 W 0.01 0.02 0.03 0.03 0.03 C	-X5 W 0.04 0.04 0.04 0.04 0.04 0.04	C 0.01 0.03 0.03 0.03 0.06 0.07
Y3	RF 6F 5F 4F 3F 2F	C 0.05 0.03 0.04 0.04 0.04 0.04 Y3	X1 W 0.01 0.02 0.03 0.03 0.03 0.03 RF	-X2 W 0.04 0.04 0.04 0.04 0.04 0.04 C 0.05	C 0.01 0.03 0.03 0.06 0.07 X5 W 0.01	C 0.05 0.03 0.04 0.04 0.04 -X6 W 0.04	X2 W 0.01 0.02 0.03 0.03 0.03 0.03 C 0.01	-X3 W 0.04 0.04 0.04 0.04 0.04 0.04 0.04 C 0.05	C 0.01 0.03 0.03 0.06 0.07 X6 W 0.01	C 0.05 0.03 0.04 0.04 0.04 0.04 -X7 W 0.04	X3 W 0.01 0.02 0.03 0.03 0.03 0.03 C 0.01	X4 0.04 0.04 0.04 0.04 0.04 0.04 0.04 C 0.05	C 0.01 0.03 0.03 0.06 0.07 X7 W 0.01	C 0.05 0.03 0.04 0.04 0.04 0.04 -X8 W 0.03	X4 W 0.01 0.02 0.03 0.03 0.03 0.03 C 0.00	-X5 W 0.04 0.04 0.04 0.04 0.04	C 0.01 0.03 0.03 0.06 0.07
Y3	RF 6F 5F 4F 3F 2F	C 0.05 0.03 0.04 0.04 0.04 Y3	X1 W 0.01 0.02 0.03 0.03 0.03 0.03 RF 6F	-X2 W 0.04 0.04 0.04 0.04 0.04 0.04 C 0.05 0.03	C 0.01 0.03 0.03 0.06 0.07 ×5 W 0.01 0.02	C 0.05 0.03 0.04 0.04 0.04 0.04 -X6 W 0.04 0.04	X2 W 0.01 0.02 0.03 0.03 0.03 0.03 C 0.01 0.03	-X3 W 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.	C 0.01 0.03 0.03 0.06 0.07 X6 W 0.01 0.02	C 0.05 0.03 0.04 0.04 0.04 0.04 -X7 W 0.04 0.04	X3 W 0.01 0.02 0.03 0.03 0.03 0.03 C 0.01 0.01	X4 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.	C 0.01 0.03 0.03 0.06 0.07 X7 W 0.01 0.02	C 0.05 0.03 0.04 0.04 0.04 0.04 -X8 W 0.03 0.04	X4 W 0.01 0.02 0.03 0.03 0.03 0.03 C 0.00 0.03	-X5 W 0.04 0.04 0.04 0.04 0.04	C 0.01 0.03 0.03 0.06 0.07
Y3	RF 6F 5F 4F 3F 2F	C 0.05 0.03 0.04 0.04 0.04 0.04 Y3	X1 0.01 0.02 0.03 0.03 0.03 0.03 0.03 RF 6F 5F	-X2 W 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.	C 0.01 0.03 0.03 0.06 0.07 ×5 W 0.01 0.02	C 0.05 0.03 0.04 0.04 0.04 0.04 -X6 W 0.04 0.04 0.04	X2 W 0.01 0.02 0.03 0.03 0.03 0.03 C 0.01 0.03 0.03	-X3 W 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.	C 0.01 0.03 0.03 0.06 0.07 X6 W 0.01 0.02 0.02	C 0.05 0.03 0.04 0.04 0.04 -X7 W 0.04 0.04 0.04	X3 W 0.01 0.02 0.03 0.03 0.03 C 0.01 0.03 0.03	X4 W 0.04 0.05 0.03 0.03 0.03	C 0.01 0.03 0.03 0.03 0.06 0.07 X77 W 0.01 0.02 0.03	C 0.05 0.03 0.04 0.04 0.04 0.04 -X8 W 0.03 0.04 0.04	X4 W 0.01 0.02 0.03 0.03 0.03 C 0.00 0.03 0.03	-X5 W 0.04 0.04 0.04 0.04 0.04	C 0.01 0.03 0.03 0.06 0.07
Y3	RF 6F 5F 4F 3F 2F	C 0.05 0.03 0.04 0.04 0.04 Y3	X1- W 0.01 0.02 0.03 0.03 0.03 0.03 RF 6F 5F 4F	-X2 W 0.04 0.04 0.04 0.04 0.04 0.04 0.04 C 0.05 0.03 0.03 0.03	C 0.01 0.03 0.03 0.06 0.07 X5 W 0.01 0.02 0.02 0.03	C 0.05 0.03 0.04 0.04 0.04 0.04 V 0.04 0.04 0.04 0.	X2 W 0.01 0.02 0.03 0.03 0.03 C 0.01 0.03 0.03 0.03	-X3 W 0.04 0.04 0.04 0.04 0.04 0.04 0.04 C 0.05 0.03 0.03 0.04	C 0.01 0.03 0.03 0.06 0.07 X66 W 0.01 0.02 0.02 0.03	C 0.05 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04	X3 W 0.01 0.02 0.03 0.03 0.03 C 0.01 0.03 0.03 0.03 0.03	X4 W 0.04 0.04 0.04 0.04 0.04 0.04 0.04 C 0.05 0.03 0.03 0.03	C 0.01 0.03 0.03 0.06 0.07 X77 W 0.01 0.02 0.03 0.03	C 0.05 0.03 0.04 0.04 0.04 0.04 V 0.03 0.04 0.04 0.04 0.04	X4 W 0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03	-X5 W 0.04 0.04 0.04 0.04 0.04	C 0.01 0.03 0.03 0.06 0.07
Y3	RF 6F 5F 4F 3F 2F	C 0.05 0.03 0.04 0.04 0.04 Y3	X1- W 0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.5 4F 5F 4F 3F	-X2 W 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.	C 0.01 0.03 0.03 0.06 0.07 X5 W 0.01 0.02 0.02 0.03 0.03	C 0.05 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04	X2 W 0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03	X3 W 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.	C 0.01 0.03 0.03 0.06 0.07 X6 W 0.01 0.02 0.02 0.03 0.03	C 0.05 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04	X3 W 0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03	X4 W 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.03 0.03 0.04 0.05	C 0.01 0.03 0.03 0.06 0.07 X7 W 0.01 0.02 0.03 0.03 0.03	C 0.05 0.03 0.04 0.04 0.04 0.04 0.04 0.03 0.04 0.04	X4 W 0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03	-X5 W 0.04 0.04 0.04 0.04 0.04	C 0.01 0.03 0.03 0.06 0.07

(b) Y 方向(加力方向: Y1→Y3)

Х1

		Y1-	-Y2			Y2-	-Y3		X2			Y1-	-Y2
	С	W	W	С	С	W	W	С			С	W	W
RF	0.06	0.02	0.04	0.00	0.06	0.02	0.04	0.00		RF	0.06	0.02	0.03
6F	0.04	0.04	0.05	0.04	0.04	0.04	0.05	0.03		6F	0.04	0.03	0.04
5F	0.04	0.03	0.04	0.04	0.03	0.03	0.04	0.04		5F	0.04	0.04	0.04
4F	0.04	0.04	0.05	0.03	0.05	0.03	0.04	0.02		4F	0.05	0.04	0.05
3F	0.05	0.04	0.05	0.05	0.04	0.04	0.04	0.05		3F	0.05	0.04	0.05
2F	0.04	0.03	0.04	0.07	0.03	0.03	0.04	0.06		2F	0.04	0.04	0.04

X4

Х3			Y1	-Y2		Y2-Y3					
		С	W	W	С	С	W	W	С		
	RF	0.06	0.02	0.04	0.02	0.03	0.00	0.05	0.00		
	6F	0.04	0.03	0.04	0.04	0.04	0.02	0.04	0.04		
	5F	0.04	0.04	0.05	0.06	0.03	0.03	0.05	0.05		
	4F	0.05	0.04	0.05	0.04	0.05	0.03	0.05	0.03		
	3F	0.05	0.04	0.05	0.06	0.04	0.04	0.05	0.06		
	2F	0.04	0.04	0.04	0.08	0.03	0.03	0.05	0.07		

	С	W	W	С	С	W	W	С		
RF	0.06	0.02	0.03	0.02	0.04	0.01	0.05	0.01		
6F	0.04	0.03	0.04	0.05	0.04	0.02	0.04	0.05		
5F	0.04	0.04	0.04	0.06	0.04	0.03	0.05	0.05		
4F	0.05	0.04	0.05	0.04	0.06	0.04	0.05	0.03		
3F	0.05	0.04	0.05	0.06	0.04	0.04	0.05	0.06		
2F	0.04	0.04	0.04	0.08	0.03	0.03	0.05	0.08		
					1/0.1/0					

Y2-Y3

		Y1·	-Y2			Y2-	-Y3	
	С	W	W	С	С	W	W	С
RF	0.06	0.02	0.03	0.02	0.04	0.01	0.05	0.01
6F	0.04	0.03	0.04	0.04	0.04	0.02	0.04	0.04
5F	0.04	0.04	0.05	0.06	0.03	0.03	0.05	0.05
4F	0.05	0.04	0.05	0.04	0.05	0.04	0.05	0.03
3F	0.05	0.04	0.05	0.06	0.04	0.04	0.05	0.06
2F	0.04	0.04	0.04	0.08	0.03	0.03	0.05	0.07

(q)保有水平耐力と必要保有水平耐力の比較

表 3.1.45、表 3.1.46 に RC モデル、RC+CLT モデルの保有水平耐力と必要保有水平耐力の比較を示 す。なお、各モデルの保有水平耐力は、図 3.1.85 で示したように、いずれかの階の層間変形角が 1/100rad に到達した時点の層せん断力とした。

RC モデルでは、塑性ヒンジが形成された RC 柱、RC はりの部材種別はいずれも FA と判定された ため、各階、各方向の D_s は 0.30 となる。RC モデルの Q_u/Q_u は X 方向で 1.17、Y 方向で 1.37 と十分 な余裕があることから、RC+CLT モデルから CLT 袖壁を取り除いたモデル(RC モデルの床スラブを RC から CLT+RC に置き換えたモデル)においても、3.1.5 の図 3.1.43 で示した構造計算フローの適用 条件を十分に満足するものと考えられる。

表 3.1.45 保有水平耐力と必要保有水平耐力の比較(RC モデル)

階	構造	F _{es}	柱及びはりの 部材群の種別	Ds	Q_{ud}	Q _{un}	Qu	$\rm Q_u/\rm Q_{un}$	判定				
6	RC	1.00	А	0.30	12214	3664	4295	1.17	OK				
5	RC	1.00	A	0.30	20776	6233	7305	1.17	OK				
4	RC	1.00	A	0.30	28233	8470	9927	1.17	OK				
3	RC	1.00	A	0.30	34576	10373	12159	1.17	OK				
2	RC	1.00	A	0.30	39934	11980	14042	1.17	OK				
1	RC	1.00	A	0.30	44243	13273	15557	1.17	OK				

(b) Y 方向

階	構造	F _{es}	柱及びはりの 部材群の種別	D_s	Q_{ud}	Q _{un}	Qu	$\rm Q_u/\rm Q_{un}$	判定
6	RC	1.00	A	0.30	12214	3664	5010	1.37	OK
5	RC	1.00	А	0.30	20776	6233	8522	1.37	OK
4	RC	1.00	A	0.30	28233	8470	11581	1.37	OK
3	RC	1.00	A	0.30	34576	10373	14183	1.37	OK
2	RC	1.00	A	0.30	39934	11980	16380	1.37	OK
1	RC	1.00	A	0.30	44243	13273	18148	1.37	OK

RC+CLT モデルでは、3.1.6 で示した CLT 袖壁を RC 袖壁付き柱の一部とみなした場合と、CLT 袖壁を RC 耐力壁の一部とみなした場合の二通りの評価結果を示しているが、いずれの場合も Q_u/Q_u は X、Y 方向とも 1.0 を上回っており、3.1.5 の図 3.1.43 で示した構造計算フローの適用条件を満足して いる。CLT 袖壁を RC 袖壁付き柱の一部とみなした場合には、RC はりに塑性ヒンジが形成される 2~5 階、X 方向の6 階では χ_e =1.0 となるため、柱及びはりの部材群の種別は C、一部の RC 柱に塑性ヒンジが形成される 1 階では χ_e =0.37 となるため、柱及びはりの部材群の種別は B と判定され、 1 階における Q_u/Q_u の値が最も小さくなる (X 方向: 1.09、Y 方向: 1.30)。一方、CLT 袖壁を RC 耐力壁の一部とみなした場合については、CLT 袖壁の耐力壁としての部材群の種別を D としているが、 耐力壁の水平荷重の分担率を示す β_u の値が 0.3 を下回るため、 D_s の値は CLT 袖壁を RC 袖壁付き柱の一部とみなした場合と同じ 0.4 に留まる。その結果、いずれの判定法を用いた場合でも、1 階における Q_u/Q_u の値が等しくなっている。なお、 β_u の値が大きくなるにつれ、CLT 袖壁を RC 袖壁付き柱の一部とみなした場合よりも、CLT 袖壁を RC 耐力壁の一部とみなした場合でも、2 階における

両者に乖離が生じることになるが、本設計マニュアルでは、RC構造が主体と考え、CLT 袖壁を取り 除いたモデルについても $D_s=0.3$ 相当の水平耐力を求めていること、水平接合部において摩擦抵抗によ る水平せん断力の伝達に期待するため、CLT 袖壁の寸法比 (D_w/h_0)に実質的な上限を設けていること 等を踏まえると、 β_u の値があまり大きくならない範囲で適用されることが望ましい。

表 3.1.46 保有水平耐力と必要保有水平耐力の比較(RC+CLTモデル)

階	構造	F _{es}	柱及びはりの 部材群の種別	耐力壁の 部材群の種別	$\beta_{\rm u}$	Ds	Q _{ud}	Q _{un}	Qu	$\rm Q_u/\rm Q_{un}$	判定
6	RC	1.00	А	_	-	0.30	12156	3647	5314	1.46	OK
5	RC	1.00	A	-	-	0.30	20477	6143	8949	1.46	OK
4	RC	1.00	A	—	-	0.30	27752	8326	12126	1.46	OK
3	RC	1.00	A	—	-	0.30	33947	10184	14832	1.46	OK
2	RC	1.00	A	—	-	0.30	39179	11754	17117	1.46	OK
1	RC	1.00	С	_	-	0.40	43387	17355	18958	1.09	OK

(a) X 方向(CLT 袖壁を RC 袖壁付き柱の一部とみなした場合)

(b))	X方向	(CLT 袖壁を	RC 耐力壁の-	-部とみなし	,た場合)
-------	-----	----------	----------	--------	-------

階	構造	F _{es}	柱及びはりの	耐力壁の	β _u	Ds	Q _{ud}	Q _{un}	Qu	Q _u /Q _{un}	判定
			部材群の種別	部材群の種別							
6	RC	1.00	А	D	0.19	0.40	12156	4862	5314	1.09	OK
5	RC	1.00	А	D	0.17	0.40	20477	8191	8949	1.09	OK
4	RC	1.00	А	D	0.15	0.40	27752	11101	12126	1.09	OK
3	RC	1.00	А	D	0.19	0.40	33947	13579	14832	1.09	OK
2	RC	1.00	А	D	0.17	0.40	39179	15672	17117	1.09	OK
1	RC	1.00	A	D	0.09	0.40	43387	17355	18958	1.09	OK

(c) Y方向(CLT 袖壁を RC 袖壁付き柱の一部とみなした場合)

階	構造	F _{es}	柱及びはりの 部材群の種別	耐力壁の 部材群の種別	$\beta_{\rm u}$	Ds	Q_{ud}	Q _{un}	Qu	$\rm Q_u/\rm Q_{un}$	判定
6	RC	1.00	В	-	-	0.35	12156	4255	6324	1.49	OK
5	RC	1.00	А	-	-	0.30	20477	6143	10651	1.73	OK
4	RC	1.00	А	-	1	0.30	27752	8326	14432	1.73	OK
3	RC	1.00	А	-		0.30	33947	10184	17653	1.73	OK
2	RC	1.00	А	_	-	0.30	39179	11754	20373	1.73	OK
1	RC	1.00	С	_	_	0.40	43387	17355	22564	1.30	OK

(d) Y方向(CLT 袖壁を RC 耐力壁の一部とみなした場合)

階	構造	F _{es}	柱及びはりの 部材群の種別	耐力壁の 部材群の種別	β _u	Ds	Q _{ud}	Q _{un}	Qu	$\rm Q_u/\rm Q_{un}$	判定
6	RC	1.00	A	D	0.27	0.40	12156	4862	6324	1.30	OK
5	RC	1.00	A	D	0.20	0.40	20477	8191	10651	1.30	OK
4	RC	1.00	А	D	0.16	0.40	27752	11101	14432	1.30	OK
3	RC	1.00	А	D	0.20	0.40	33947	13579	17653	1.30	OK
2	RC	1.00	A	D	0.17	0.40	39179	15672	20373	1.30	OK
1	RC	1.00	A	D	0.13	0.40	43387	17355	22564	1.30	OK

(r) 保証設計1 (RC 柱)

ここでは、RC+CLT モデルについて、3.1.8、3.1.9 に基づいて、保証設計を行った結果を示す。表 3.1.47 に、表 3.1.37、表 3.1.38 で示した Ds 算定時の RC 柱のせん断力 QMO に対する、3.1.4 で示した式 (3.1.4)による RC 柱のせん断耐力 _cQ_{su} (高強度せん断補強筋を用いている場合は評定の設計式によっ た)の比率を示す。両者の比率は、RC柱の場合に求められる割り増し係数(1.25)を上回っているこ とから、保証設計の条件を満足していることが確認できる。また、表 3.1.48 に RC 柱のパンチングシ アに対する余裕度を示す。ここでは、3.1.9 で示したように、式(3.1.46)で求められる RC 柱の脚部及び 頂部に作用する可能性がある水平せん断力(表 3.1.37、表 3.1.38 で示した、RC 柱に作用する D。算定 時の水平せん断力 cQMO に、RC 柱と接するどちらか一方の CLT 袖壁に作用する Ds 算定時の水平せん 断力 wQM0を足し合わせたもの)に対して、式(3.1.47)で求められる RC 柱のパンチングシア耐力 。Qnu が十分な余裕があることを確認している。両者の比率は、RC柱の場合に求められる割り増し係数(1.25) を上回っていることから、保証設計の条件を満足していることが確認できる。

なお、RC柱の付着割裂破壊に対しては、(n)部材種別の判定1(RC柱、CLT袖壁をRC袖壁付き 柱の一部とみなす場合)において確認を行っているため、ここでは割愛する。

Y1		X1	X2	Х3	X4	X5	X6	X7	X8	Y3		X1	X2	Х3	X4	X5	X6	X7	X8
	6F	8.57	1.93	1.94	1.94	1.94	1.94	1.90	23.99		6F	9.21	1.96	1.96	1.96	1.96	1.96	1.92	30.06
	5F	2.31	1.34	1.34	1.34	1.34	1.34	1.33	2.25		5F	2.37	1.34	1.35	1.35	1.35	1.35	1.34	2.33
	4F	1.73	1.39	1.39	1.39	1.39	1.39	1.38	1.84		4F	1.74	1.38	1.39	1.38	1.38	1.38	1.37	1.87
	3F	1.88	1.38	1.38	1.38	1.38	1.38	1.37	2.09		3F	1.93	1.38	1.38	1.38	1.38	1.38	1.37	2.10
	2F	2.65	1.57	1.57	1.57	1.57	1.57	1.56	2.64		2F	2.72	1.57	1.58	1.57	1.57	1.57	1.56	2.73
	1F	3.62	2.05	2.06	2.06	2.06	2.06	2.07	2.24		1F	3.33	2.05	2.07	2.07	2.07	2.07	2.08	2.22

(a) X 方向(加力方向: X1→X8)

											-		-						
X1		Y1	Y2	Y3	X2		Y1	Y2	Y3	Х3		Y1	Y2	Y3	X4		Y1	Y2	Y3
	6F	5.04	1.61	17.1		6F	6.01	1.42	9.00		6F	5.95	1.49	9.02		6F	5.88	1.45	9.41
	5F	2.53	1.43	2.63		5F	2.23	1.44	2.11		5F	2.24	1.47	2.12		5F	2.25	1.45	2.12
	4F	1.84	1.53	2.26		4F	2.03	1.35	2.12		4F	2.03	1.35	2.13		4F	2.03	1.35	2.14
	3F	1.71	1.42	2.04		3F	1.92	1.42	2.21		3F	1.93	1.43	2.22		3F	1.93	1.42	2.23
	2F	2.58	1.64	2.75		2F	2.64	1.63	2.65		2F	2.66	1.64	2.68		2F	2.66	1.63	2.68
	1F	4.78	2.50	2.44		1F	4.21	2.39	2.40		1F	4.12	2.39	2.40		1F	4.13	2.40	2.40
															,				

(b) Y 方向(加力方向: Y1→Y3)

表 3.1.48 RC 柱のパンチングシアに対する余裕度。Gu/(。Guo+wGuo)

(a) X 方向(加力方向: X1→X8)

Y1		X1	X2	Х3	X4	X5	X6	X7	X8	Y3		X1	X2	Х3	X4	X5	X6	X7	X8
	6F	16.92	6.29	6.30	6.30	6.30	6.30	6.19	25.40		6F	17.64	6.36	6.37	6.35	6.35	6.35	6.26	27.13
	5F	7.19	4.39	4.40	4.40	4.40	4.40	4.36	6.97		5F	7.34	4.40	4.42	4.41	4.42	4.41	4.38	7.19
	4F	5.25	3.44	3.44	3.44	3.44	3.44	3.41	5.65		4F	5.31	3.43	3.43	3.43	3.43	3.43	3.40	5.76
	3F	4.52	3.19	3.19	3.19	3.19	3.20	3.16	5.17		3F	4.78	3.19	3.20	3.19	3.19	3.20	3.16	5.23
	2F	4.02	3.08	3.07	3.07	3.07	3.07	3.05	5.08		2F	4.30	3.08	3.07	3.06	3.06	3.06	3.03	5.22
	1F	4.42	3.04	3.05	3.05	3.05	3.05	3.05	4.04		1F	4.41	3.05	3.07	3.06	3.07	3.07	3.06	4.04

X1 Y1 Y2 Y3 X2

6F	11.53	5.30	22.18
5F	7.56	4.82	7.85
4F	5.68	3.99	7.00
3F	4.36	3.21	5.67
2F	3.82	3.03	5.16
1F	4.80	3.22	4.21

(b) Y 方向(加力方向: Y1→Y3)

	ΎΙ	ΥZ	YЗ	X3		ΥI	ΥZ	YЗ	X4		ΥI	ΥZ	YЗ
6F	14.04	4.72	16.51		6F	13.88	4.96	16.54		6F	12.84	4.84	16.86
5F	7.26	4.76	6.93		5F	7.29	4.84	6.96		5F	7.31	4.80	6.95
4F	5.38	3.41	5.77		4F	5.40	3.43	5.81		4F	5.40	3.42	5.82
3F	4.75	3.09	5.50		3F	4.76	3.13	5.53		3F	4.76	3.11	5.54
2F	4.07	2.85	5.00		2F	4.13	2.86	5.05		2F	4.13	2.84	5.05
1F	4.65	3.18	3.94		1F	4.64	3.19	3.96		1F	4.65	3.19	3.96

Y3

(s) 保証設計 2 (CLT 袖壁)

3.1.8、3.1.9に基づいて、CLT 袖壁の保証設計を行った結果を示す。表 3.1.49 に、表 3.1.37、表 3.1.38 で示した D_s 算定時の CLT 袖壁の水平せん断力 $_wQ_{M0}$ に対する、3.1.4 で示した式(3.1.22)による CLT 袖 壁のせん断耐力 $_wQ_{su}$ の比率を示す。両者の比率は、CLT 袖壁に求められる割り増し係数(1.25)を上 回っていることから、保証設計の条件を満足していることが確認できる。

表 3.1.49 CLT 袖壁の水平せん断力に対するせん断余裕度 "Qu/"Quo

(a) X 方向(加力方向: X1→X8)

Y1		X1	X2	X2	Х3	Х3	X4	X4	X5	X5	X6	X6	X7	X7	X8
	6F	3.71	3.60	3.71	3.60	3.71	3.60	3.71	3.60	3.71	3.60	3.71	3.60	3.71	3.60
	5F	3.49	3.26	3.49	3.26	3.49	3.26	3.49	3.26	3.49	3.26	3.49	3.26	3.44	3.26
	4F	3.26	3.05	3.21	3.05	3.21	3.05	3.21	3.05	3.21	3.05	3.21	3.05	3.17	3.05
	3F	3.21	2.86	3.12	2.88	3.12	2.88	3.12	2.88	3.12	2.88	3.12	2.88	3.12	2.84
	2F	2.96	3.15	2.81	3.18	2.81	3.18	2.81	3.18	2.81	3.18	2.81	3.18	2.81	3.06
	1F	2.70	10.63	2.93	11.73	2.91	11.73	2.91	11.73	2.91	11.73	2.91	12.15	2.88	6.54

Y3		X1	X2	X2	Х3	Х3	X4	X4	X5	X5	X6	X6	X7	X7	X8
	6F	3.71	3.60	3.71	3.60	3.71	3.60	3.71	3.60	3.71	3.60	3.71	3.60	3.71	3.60
	5F	3.49	3.26	3.49	3.26	3.49	3.26	3.49	3.26	3.49	3.26	3.49	3.26	3.44	3.30
	4F	3.21	3.05	3.21	3.05	3.21	3.05	3.21	3.05	3.21	3.05	3.21	3.05	3.17	3.05
	3F	3.18	2.86	3.12	2.88	3.12	2.88	3.12	2.88	3.12	2.88	3.12	2.88	3.12	2.84
	2F	2.93	3.15	2.79	3.18	2.81	3.18	2.81	3.18	2.81	3.18	2.81	3.18	2.81	3.06
	1F	2.70	10.31	2.93	11.73	2.93	11.73	2.91	11.73	2.93	11.73	2.91	12.15	2.88	6.30

(b) Y 方向(加力方向: Y1→Y3)

<1		Y1	Y2	Y2	Y3	X2		Y1	Y2	Y2	Y3	Х3		Y1	Y2	Y2	Y3	X4		Y1	Y2	Y2	Y3
	6F	4.00	4.16	4.05	4.28		6F	4.16	3.89	4.75	3.66		6F	4.10	4.10	4.60	3.66		6F	3.49	4.05	4.67	3.66
	5F	3.89	3.62	3.80	3.62		5F	3.70	3.62	3.75	3.62		5F	3.70	3.62	3.84	3.62		5F	3.70	3.62	3.80	3.62
	4F	3.62	3.62	3.62	3.62		4F	3.62	3.57	3.62	3.62		4F	3.62	3.57	3.62	3.62		4F	3.62	3.57	3.62	3.62
	3F	3.60	3.20	3.32	3.20		3F	3.54	3.15	3.22	3.17		3F	3.54	3.17	3.30	3.17		3F	3.54	3.17	3.25	3.17
	2F	3.32	3.15	3.17	3.25		2F	3.25	3.15	3.17	3.17		2F	3.25	3.15	3.17	3.17		2F	3.25	3.15	3.17	3.17
	1F	3.20	4.21	3.20	4.21		1F	3.20	4.21	3.20	4.21		1F	3.20	4.21	3.20	4.21		1F	3.20	4.21	3.20	4.21

表 3.1.50 に、3.1.8 で示した式(3.1.44)、式(3.1.45)に、表 3.1.34、表 3.1.35 で示した D_s 算定時の CLT 袖壁の圧縮軸力を代入して求めた鉛直せん断力 wvQ_{M0} に対する、3.1.9 で示した式(3.1.52)による CLT 袖壁の鉛直断面のせん断耐力 wvQ_{su} の比率を示す。両者の比率は、CLT 袖壁に求められる割り増し係数(1.25)を上回っていることから、保証設計の条件を満足していることが確認できる。

表 3.1.50 CLT 袖壁の鉛直せん断力に対するせん断余裕度 wgu/wgu

(a) X 方向(加力方向: X1→X8)

				(0)							• /				
Y1		X1	X2	X2	Х3	Х3	X4	X4	X5	X5	X6	X6	X7	X7	X8
	6F	2.90	2.60	2.90	2.59	2.90	2.59	2.90	2.59	2.90	2.59	2.90	2.59	2.90	2.63
	5F	2.44	2.28	2.42	2.28	2.42	2.28	2.42	2.28	2.42	2.28	2.42	2.28	2.39	2.28
	4F	2.28	2.28	2.28	2.28	2.28	2.28	2.28	2.28	2.28	2.28	2.28	2.28	2.28	2.28
	3F	2.44	2.07	2.26	2.07	2.27	2.07	2.26	2.07	2.26	2.07	2.26	2.07	2.24	2.07
	2F	2.07	2.35	2.07	2.41	2.07	2.41	2.07	2.41	2.07	2.41	2.07	2.42	2.07	2.16
	1F	2.07	9.69	2.07	11.18	2.07	11.18	2.07	11.07	2.07	11.07	2.07	11.51	2.07	5.54
	-					-		-				-		-	
Y3		X1	X2	X2	Х3	Х3	X4	X4	X5	X5	X6	X6	X7	X7	X8
	6F	2.90	2.65	2.90	2.61	2.90	2.61	2.90	2.61	2.90	2.61	2.90	2.61	2.90	2.68
	5F	2.41	2.28	2.41	2.28	2.42	2.28	2.42	2.28	2.42	2.28	2.42	2.28	2.39	2.28
	4F	2.28	2.28	2.28	2.28	2.28	2.28	2.28	2.28	2.28	2.28	2.28	2.28	2.28	2.28
	3F	2.39	2.07	2.79	2.07	2.26	2.07	2.26	2.07	2.26	2.07	2.26	2.07	2.24	2.07
	2F	2.07	2 35	2.07	2/2	2.07	2/2	2.07	2/2	2.07	2/2	2.07	2/3	2.07	21/

(b) Y 方向(加力方向: Y1→Y3) | y1 | y2 | y2 | y3 | x3 | | y1 | y2 |

1F 2.07 9.45 2.07 11.07 2.07 11.28 2.07 11.28 2.07 11.28 2.07 11.28 2.07 11.28 2.07 11.86 2.07 5.31

1		Y1	Y2	Y2	Y3
	6F	2.36	2.54	2.42	2.70
	5F	2.18	1.88	2.10	1.88
	4F	1.88	1.87	1.88	1.85
	3F	2.22	1.70	1.84	1.67
	2F	1.82	1.67	1.67	1.77
	1F	1.65	3.50	1.65	3.48

X

	(0)	1 73	י נייו	())H
	Y1	Y2	Y2	Y3
6F	2.55	2.20	3.58	2.23
5F	1.99	1.87	2.03	1.88
4F	1.88	1.88	1.88	1.87
3F	2.16	1.67	1.74	1.66
2F	1.75	1.67	1.67	1.67
1F	1.65	3.52	1.65	3.46

X2

	Y1	Y2	Y2	Y3
6F	2.50	2.46	3.31	1.88
5F	1.99	1.87	2.16	1.88
4F	1.88	1.88	1.88	1.87
3F	2.15	1.67	1.81	1.66
2F	1.75	1.67	1.67	1.67
1F	1.65	3.52	1.65	3.46

	Y1	Y2	Y2	Y3
6F	2.40	2.40	3.46	1.88
5F	1.97	1.87	2.08	1.88
4F	F 1.88	1.88	1.88	1.87
3F	2.15	1.67	1.77	1.66
2F	1.75	1.67	1.67	1.67
1F	1.65	3.52	1.65	3.46

X4

(t) 保証設計3 (RC はり)

3.1.8、3.1.9に基づいて、RC はりの保証設計を行った結果を示す。表 3.1.51に、表 3.1.30 で示した 長期荷重時のRC はりのせん断力 $_{b}Q_{0}$ 、表 3.1.37、表 3.1.38 で示した D_{s} 算定時のRC 柱のせん断力 $_{c}Q_{M0}$ 、 3.1.4 で示した式(3.1.14)による RC はりのせん断耐力 $_{b}Q_{su}$ (高強度せん断補強筋を用いている場合は評 定の設計式によった)を用いて計算した設計の余裕度 ($_{b}Q_{su}-_{b}Q_{0}$)/ $_{c}Q_{M0}$ を示す。表中に示す余裕度の 最低値は、X 方向で 1.24、Y 方向で 1.25 である。3.1.8 (b)で示したように、本設計例では、RC はりの 両端に塑性ヒンジが形成されるため、割り増し係数は 1.1 以上を確保すれば良いが、CLT 袖壁の設置 に伴う不確定性を考慮して、安全側の配慮として、割り増し係数を 1.2 以上とした場合でも、保証設 計の条件を満足していることが確認できる。なお、RC 柱フェイスに作用するせん断力に関しては、 3.1.9 (b) RC はりで示したように、3.1.4 (c) RC はりの式(3.1.14)によるせん断耐力 $_{b}Q_{su}$ ではなく、式 (3.1.15)によるパンチングシア耐力 $_{p}Q_{su}$ を用いても良いが、ここでは式(3.1.14)によるせん断耐力で十分 な余裕があることが確認できたため、パンチングシア耐力を用いた検討は省略している。

なお、通し配筋とした RC はりについては、RC 柱と同様に、上記のように、荒川 mean 式によるせ ん断余裕度の確認を行い、付着割裂破壊に対する安全性の検討を行っていることから、部材種別は FA に相当するものと判断する。但し、図 3.1.85 で示したように、本設計例では、層間変形角 1/33rad と比 較的大きい変形状態で D_s 算定用の応力を求めていることから、カットオフ筋を有する RC はりに加 え、安全側の配慮として、通し配筋とした RC はりについても、文献[3.1.2]による付着信頼強度が設計 用付着応力度を上回ることを確認している。この際、主筋の応力度の差 $\Delta \sigma$ には $2\sigma_{yu}$ (σ_{yu} : 主筋の上 限強度算定用強度)を、部材のクリアスパン長さ L には CLT 袖壁フェイス間の距離を用いた。図 3.1.77 の断面リストで示したように、RC 大ばりのカットオフ位置では、文献[3.1.2]による必要定着長さを満 足できるように、はり主筋の上限強度算定用強度 σ_{yu} を用いた設計用付着応力度から求められる必要 付着長さに、はりの有効せいを累加した値を必要カットオフ長さとし、CLT 袖壁のフェイス位置から、 必要カットオフ長さ以上の定着長を確保している。

表 3. 1. 51 RC はりのせん断余裕度(${}_{b}a_{su} - {}_{b}a_{0}$) / ${}_{b}a_{m}$

(a) X 方向 (加力方向 : X1→X8)

Y1			X1	-X2	()		X2	-X3		- · ·	X3-	-X4			X4-	X5		Ì
		С	W	W	С	С	W	W	С	С	W	W	С	С	W	W	С	ł
	RF	2.07	7.19	1.41	9.71	2.03	8.61	1.40	8.88	2.03	8.61	1.40	8.86	2.04	8.61	1.40	8.86	ł
	6F	2.67	3.15	1.60	2.12	2.77	3.46	1.60	2.66	2.77	3.46	1.61	2.04	2.77	3.46	1.61	2.05	Ì
	5F	2.27	2.73	1.53	1.76	2.31	2.98	1.56	1.80	2.31	2.98	1.55	1.80	2.31	2.98	1.56	1.80	ł
	4F	1.90	2.18	1.41	2.08	1.90	2.36	1.44	2.13	1.89	2.36	1.44	2.12	1.90	2.36	1.44	2.12	ł
	3F	1.76	2.11	1.46	1.24	1.75	2.28	1.46	1.25	1.75	2.28	1.46	1.25	1.75	2.28	1.46	1.25	ł
	2F	2.30	2.92	2.10	1.54	2.25	3.19	2.14	1.46	2.25	3.19	2.14	1.46	2.26	3.19	2.14	1.46	ł
																		ļ
		Y1		_	X5-	-X6	-	-	X6-	-X7	-		X7	-X8	-			
				С	W	W	С	С	W	W	С	С	W	W	С			
			RF	2.03	8.61	1.40	8.86	2.04	8.59	1.41	8.88	1.98	6.94	2.22	11.9			
			6F	2.77	3.46	1.61	2.05	2.77	3.46	1.62	2.05	2.46	3.06	1.92	2.04			
			5F	2.31	2.98	1.56	1.80	2.31	2.98	1.56	1.80	2.10	2.67	1.81	1.70			
			4F	1.90	2.36	1.44	2.12	1.90	2.36	1.44	2.13	1.77	2.14	1.62	2.12			
			3F	1.75	2.28	1.46	1.25	1.75	2.28	1.47	1.25	1.68	2.08	1.66	1.25			
			2F	2.26	3.19	2.14	1.46	2.26	3.19	2.14	1.46	2.21	2.88	2.30	1.47			
Y3			X1	-X2			X2	-X3			X3-	-X4			X4-	X5		۱
		С	W	W	С	С	W	W	С	С	W	W	С	С	W	W	С	ł
	RF	2.00	6.40	1.47	9.30	2.01	8.06	1.44	8.56	2.01	8.04	1.44	8.54	2.02	8.06	1.44	8.56	ł
	6F	2.55	3.07	1.58	2.13	2.74	3.41	1.63	2.18	2.73	3.41	1.63	2.17	2.74	3.41	1.63	2.18	ł
	5F	2.16	2.67	1.51	1.75	2.29	2.94	1.57	1.83	2.29	2.93	1.57	1.83	2.29	2.94	1.57	1.83	ł
	4F	1.84	2.15	1.40	2.07	1.88	2.34	1.45	2.14	1.87	2.34	1.44	2.14	1.88	2.34	1.45	2.14	ł
	3F	1.74	2.07	1.44	1.24	1.74	2.26	1.47	1.25	1.73	2.26	1.47	1.25	1.74	2.26	1.47	1.25	ł
	2F	2.29	2.89	2.09	1.44	2.24	3.17	2.15	1.47	2.24	3.16	2.15	1.46	2.24	3.17	2.15	1.46	ł
		<u> </u>		I				I				I						,
		Y3		-	X5-	-X6	-	-	X6-	-X/	-		X /	- X8	-			
				С	W	W	С	С	W	W	С	С	W	W	С			
			RF	2.01	8.06	1.45	8.54	2.02	8.06	1.44	8.56	1.99	6.61	1.58	12.9			
			6F	2.73	3.41	1.63	2.18	2.74	3.42	1.63	2.18	2.47	3.07	1.59	2.01			
			5F	2.29	2.93	1.57	1.83	2.30	2.94	1.57	1.83	2.10	2.69	1.53	1.85			
			4F	1.88	2.34	1.45	2.14	1.88	2.34	1.45	2.14	1.78	2.14	1.40	2.19			
			3F	1.73	2.26	1.47	1.25	1.74	2.27	1.47	1.25	1.69	2.08	1.45	1.27			
			2F	2.24	3.17	2.15	1.46	2.24	3.17	2.15	1.47	2.20	2.87	2.07	1.49			
					(b)	Y 方	向	(加)	っ方に	句:\	(1→	Y3)						
		Y1-	-Y2		(/	Y2	Y3		X2	-		Y1	-Y2			Y2	-Y3	
	С	W	W	С	С	W	W	С			С	W	W	С	С	W	W	С
RF	1.78	3.85	1.39	79.4	1.98	5.12	1.5	48.1		RF	1.97	4.32	2.00	2.00	2.78	8.03	1.33	7.1
6F	2.12	2.18	1.53	1.82	2.16	2.36	1.53	2.02		6F	2.23	2.60	2.00	1.29	2.26	3.32	1.58	1.43
5F	2.26	2.51	1.86	1.74	2.45	2.61	1.83	1.73		5F	2.26	2.38	1.98	1.30	2.50	2.61	1.63	1.49
4F	2.07	2.34	1.75	2.57	1.96	2.49	1.76	2.86		4F	1.78	2.07	1.64	1.49	1.77	2.33	1.43	2.05
3F	2.04	2.31	1.83	1.78	2.25	2.39	1.82	1.67		3F	1.78	2.04	1.73	1.25	2.14	2.19	1.47	1.36
2F	2.30	2.46	2.19	1.56	2.51	2.49	1.99	1.47		2F	2.68	2.82	2.60	1.48	3.01	2.99	2.13	1.52
		V1				<u>v</u> ၁	V3		Vл	-		V1	2			V0	V2	
	C	11.	- 1 2	C	C	12	-13	C	A4		C	11		C	C	12	-13	
DE	1.06	1 20	1.06	2 17	2 2 2 2	20.2	1 32	32.5		PF	1 03	1 33	1 0.8	2.18	3.0	13.0	1.36	65
65	2.20	4.20 2.52	1.30	1/12	2.60	30.3	1.52	1 56		65	2.33	2/7	1.50	1 27	2.0	3 56	1.50	1 /17
55	2.20	2.32	1.92	1.42	2.00	2 00	1.57	1.30		55	2.22	2.41	1.92	1.37	2.30	2 71	1.01	1.47
	1 78	2.50	1.54	1.55	1 90	2.30	1 4 4	2.03			1 76	2.55	1.55	1.54	1.94	2.71	1.00	2 11
-+1 3F	1 78	2.00	1 71	1.30	2.22	2.40	1 48	1 37		3F	1.70	2.03	1 71	1.37	2 17	2.35	1.40	1 39
2F	3.11	2.80	2.57	1.50	3.20	3.19	2.14	1.51		2F	2.68	2.81	2.58	1.50	3.08	3.07	2.16	1.53
'	5.11	1	L,	2.00	10.20	1		1			1		1	2.50	1	5.01	10	1

X1

Х3

(u) 保証設計4(RC 柱はり接合部)

RC 柱はり接合部に関しては、通常の RC 架構と同じように、文献[3.1.2]の 8.3.2 節のせん断耐力式 による接合部せん断耐力 ¡Qsu が、文献[3.1.4]の 6.4 節に示された設計用せん断力 ¡QMo を上回ることを 確認している。表 3.1.52 に、RC 柱はり接合部の余裕度 iQsu/ jQM0 を示す。いずれの箇所でも、余裕度 は 1.0 を上回っており、保証設計の条件を満足している。なお、文献[3.1.2]の 8.3.2 節のせん断耐力式 の採用にあたって、以下の規定を満足することを別途確認している。

- ・文献[3.1.2]の 8.4 節にしたがい、RC はりの通し配筋について、付着強度に対する設計用付着応力 度の比率を 1.25 未満とする。
- ・文献[3.1.2]の8.5節にしたがい、柱はり接合部内のRCはり主筋の柱内への定着投影長さを柱せい の 2/3 以上(実際には 0.75 倍以上)とする。
- ・ 文献[3.1.2]の 8.6 節にしたがい、柱はり接合部の横補強筋比は 0.3%以上とする。

表 3.1.52 RC 柱はり接合部のせん断余裕度 i Qu/i Qu (a) X 方向(加力方向: X1→X8)

Υ3

1		X1	X2	Х3	X4	X5	X6	X7	X8
	RF	1.27	1.31	1.31	1.31	1.31	1.31	1.32	1.03
	6F	1.98	1.83	1.82	1.82	1.82	1.82	1.83	1.7
	5F	2.03	1.74	1.73	1.73	1.73	1.73	1.74	1.82
	4F	1.58	1.40	1.39	1.39	1.39	1.39	1.40	1.40
	3F	1.88	1.67	1.66	1.66	1.66	1.66	1.67	1.7
	2F	2.07	1.94	1.93	1.93	1.93	1.93	1.93	2.5

	X1	X2	Х3	X4	X5	X6	X7	X8
RF	1.26	1.31	1.31	1.31	1.31	1.31	1.31	1.03
6F	1.97	1.82	1.82	1.82	1.82	1.82	1.83	1.70
5F	2.04	1.74	1.73	1.73	1.73	1.73	1.74	1.82
4F	1.59	1.40	1.40	1.40	1.40	1.40	1.40	1.46
3F	1.89	1.67	1.67	1.67	1.67	1.67	1.67	1.77
2F	2.14	1.94	1.93	1.93	1.93	1.93	1.93	2.55

(b) Y 方向(加力方向: Y1→Y3)

X1		Y1
	RF	1.36
	6F	1.91

5F

4F

3F 2.75

2F

2.43 2.07

2.23 1.91

2.87

Y2 1.43

1.76

2.06

2.27

Y

Y1 Y2 Y3 X3 Y3 X2 1.05 RF 1.56 1.41 1.12 1.61 6F 2.47 2.31 1.92 2.11 2.37 2.25 1.94 5F 2.21 1.88 1.98 4F 2.27 2.35 2.61 3F 2.79 2.34 2F 3.04 2.58 3.65 4.30

	Y1	Y2	Y3	X4		Y1	Y2
RF	1.56	1.40	1.12		RF	1.56	1.40
6F	2.47	2.29	1.92		6F	2.47	2.30
5F	2.37	2.24	1.94		5F	2.37	2.24
4F	2.27	2.20	1.88		4F	2.27	2.21
3F	2.79	2.34	2.34		3F	2.79	2.35
2F	3.07	2.57	3.67		2F	3.07	2.57

Y2 Υ3

1.40 1.12

2.30 1.92

2.35 2.34

1.94

1.88

3.66

(v) 保証設計5(滑り止め)

CLT 袖壁端に設置する滑り止めが十分なせん断耐力を保有しているかどうかを検証する。ここでは、 摩擦抵抗は無視し、式(3.1.67)によって求められる D。算定時に CLT 袖壁に作用する水平せん断力に割 り増し係数 1.25 を乗じた設計用せん断力に対して、式(3.1.68)で示す滑り止めの水平せん断耐力が上回 ることを確認する。なお、滑り止めの水平せん断耐力は、式(3.1.69)から式(3.1.75)に示す CLT の木口面 の支圧耐力、ウェブのせん断降伏耐力、曲げ耐力時せん断力、寸切りボルトのせん断耐力、底面にお ける寸切りボルトの引張降伏時せん断力、支圧板(フランジ)の崩壊線理論による曲げ耐力時せん断 カ、滑り止め底板における崩壊線理論による曲げ耐力時せん断力のうちの最も小さいものとする。

表 3.1.53 に滑り止めの保証設計の結果を示す。ここでは、図 3.1.81、図 3.1.82 のリストに示したよ うに、X2~X7 構面用(CLT 袖壁、滑り止めを RC はりの中央付近に配置する場合)、X1、X8、Y1、 Y3 構面用(CLT 袖壁、滑り止めを RC はりの端部に揃えて配置する場合)に区別して、滑り止めの試 設計を行っている。 滑り止めの材種は SS400、 滑り止めの固定に用いた寸切りボルトの強度区分は 5.6 と仮定している。いずれの場合も、設計用せん断力に対して十分なせん断耐力が確保されていること が確認できる。

	表 3.1.53	滑り止めの試設計の結果
(a) X2~X7 構面用	(CLT 袖壁、滑り	J止めをRCはりの中央付近に配置する場合)

			1~3階	4~6階	備考
CITの支圧耐力	0	kN	321	194	=210mm × 220mm × 6.94N/mm ² (1~3F)
	hhbƳu		521	131	=150mm × 200mm × 6.48N/mm ² (4~6F)
鋼板のせん断耐力	hhurQu	kN	434	347	$=19$ mm $\times 200$ mm $\times 235$ N/mm ² / $\sqrt{3}$ (1 \sim 3F)
	iiiiw eu		101	0	$=16$ mm $\times 160$ mm $\times 235$ N/mm ² / $\sqrt{3}$ (4 \sim 6F)
鋼板の曲げ耐力時せん断力	hhfQu	kN	354	241	=165651mm ³ (断面係数)×235N/mm ² /(0.5×220mm)(1~3F)
					=102430mm ³ (断面係数)×235N/mm ² /(0.5×200mm)(4~6F)
					=4本×245mm ² ×
底面の寸切りボルトのせん断耐力	hh-0	kN	206	132	min(0.7×300N/mm ² , 0.4×(33N/mm ² ×26.7kN/mm ²) ^{0.5}) (1~3F)
	nns « u	KIN .	200	102	$=4 \pm \times 157 \text{mm}^2 \times$
					min(0.7×300N/mm ² , 0.4×(30N/mm ² ×25.5kN/mm ²) ^{0.5}) (4~6F)
		kN			=0.9×105.5mm×4本×245mm ²
店売の ナロリギットの 曲げ 計力 味 中 / 厳 カ	$_{\rm hht}Q_{\rm u}$		254	125	×300N/mm ² (設計時)/ (0.5×220mm) (1~3F)
底面の引切りホルドの曲り耐力時でん断力					=0.9×73.5mm×4本×157mm ²
					×300N/mm ² (設計時)/ (0.5×200mm) (4~6F)
			342	395	=(4×204mm/194mm+2+2)×(1/4×235N/mm ² ×(16mm) ²)
滑り止めの支圧板(フランジ)における		kN			/(204mm/2-1/12×194mm)/194mm×220mm×210mm (1~3F)
崩壊線理論による曲げ耐力時せん断力	hht Q u1				$=(4 \times 184 \text{mm}/134 \text{mm}+2+2) \times (1/4 \times 235 \text{N/mm}^2 \times (16 \text{mm})^2)$
					/(184mm/2-1/12×134mm)/134mm×200mm×150mm (4~6F)
					$=0.9 \times 105.5$ mm $\times 2 \times (1/4 \times 235$ N/mm ² $\times (16$ mm) ²) \times
					MIN $(4\pi, 4 \times (200 \text{ mm} - 16 \text{ mm})/(0.5 \times 194 \text{ mm})$
滑り止め底板における					+(0.5×194mm)/(200mm-16mm))))/(0.5×220mm) (1~3F)
崩壊線理論による曲げ耐力時せん断力	hhpQul	kN	252	208	$=0.9 \times 73.5$ mm $\times 2 \times (1/4 \times 235$ N/mm ² $\times (16$ mm) ²) \times
					MIN $(4\pi, 4 \times (160 \text{ mm} - 16 \text{ mm})/(0.5 \times 134 \text{ mm})$
					+(0.5×134mm)/(160mm-16mm))))/(0.5×200mm) (4~6F)
滑り止めの水平せん断耐力	_{hh} Q _u	kN	206	125	
設計用せん断力(最大せん断力×1.25倍)		kN	169	109	
余裕度			1.22	1.15	

(b) Y1、Y3 構面用(CLT 袖壁、滑り止めを RC はりの端部に揃えて配置する場合)

			1~3階	4~6階	備考
CLTの支圧耐力	0	٧N	321	19/	=210mm×220mm×6.94N/mm ² (1~3F)
	hhbƳu	KIN	521	134	=150mm × 200mm × 6.48N/mm ² (4~6F)
鋼板のせん断耐力	ыО.	kN	326	261	$=19$ mm $\times 200$ mm $\times 235$ N/mm ² / $\sqrt{3}$ (1 \sim 3F)
	nnw « u		020	201	$=16$ mm $\times 160$ mm $\times 235$ N/mm ² / $\sqrt{3}$ (4 \sim 6F)
鋼板の曲げ耐力時せん断力	hhfQ.	kN	270	185	=126587mm ³ (断面係数)×235N/mm ² /(0.5×220mm)(1~3F)
	iiii cu				=78628mm ³ (断面係数)×235N/mm ² /(0.5×200mm)(4~6F)
					$=2 \pm \times 561 \text{mm}^2 \times$
底面の寸切りボルトのせん断耐力	ьь - О	kN	236	148	min(0.7×300N/mm ² , 0.4×(33N/mm ² ×26.7kN/mm ²) ^{0.5}) (1~3F)
	nns ୟ u		200	110	$=2 \pm \times 353 \text{mm}^2 \times$
					$min(0.7 \times 300N/mm^2, 0.4 \times (30N/mm^2 \times 25.5kN/mm^2)^{0.5})$ (4~6F)
					=0.9×105.5mm×2本×567mm ²
승규 소 내고 내 있는 소 프 너희는 바 내 가 써드는	~	kN	001	140	×300N/mm ² (設計時)/ (0.5×220mm) (1~3F)
底面の寸切りホルトの曲け耐力時せん断力	hhtQu		291		=0.9×73.5mm×2本×353mm ²
					×300N/mm ² (設計時)/(0.5×200mm)(4~6F)
滑り止めの支圧板 (フランジ) における 崩壊線理論による曲げ耐力時せん断力		kN	573	530	=(4×198mm/118mm+2+4×(198mm-0.5×118mm)/118mm+2) ×(1/4×235N/mm ² ×(12mm) ²) /(198mm/2 - 1/12×118mm)/118mm×220mm×210mm (1~3F) =(4×178mm/98mm+2+4×(178mm-0.5×98mm)/98mm+2) ×(1/4×235N/mm ² ×(12mm) ²) /(178mm/2 - 1/12×98mm)/98mm×200mm×150mm (4~6F)
滑り止め底板における 崩壊線理論による曲げ耐力時せん断力		kN	249	188	$= 0.9 \times 105.5 \text{mm} \times (1/4 \times 235 \text{N/mm}^2 \times (22 \text{mm})^2) \times \text{MIN}(4 \pi, 4 \times (200 \text{mm} - 12 \text{mm})/118 \text{mm} + 6 \times 118 \text{mm}/(200 \text{mm} - 12 \text{mm})) / (0.5 \times 220 \text{mm}) (1 \sim 3\text{F}) = 0.9 \times 73.5 \text{mm} \times (1/4 \times 235 \text{N/mm}^2 \times (22 \text{mm})^2) \times \text{MIN}(4 \pi, 4 \times (160 \text{mm} - 12 \text{mm})/98 \text{mm} + 6 \times 98 \text{mm}/160 \text{mm} - 12 \text{mm})) / (0.5 \times 200 \text{mm}) (4 \sim 6\text{F})$
滑り止めの水平せん断耐力	$_{hh}\boldsymbol{Q}_{u}$	kN	236	140	
設計用せん断力(最大せん断力×1.25倍)		kN	169	109	
余裕度			1.40	1.29	

[参考文献]

- [3.1.1] 国土技術政策総合研究所:災害拠点建築物の設計ガイドライン(案)、 http://www.nilim.go.jp/lab/hbg/saigai/saigaikyotenn.htm、2017.3
- [3.1.2] 日本建築学会:鉄筋コンクリート造建物の靱性保証型耐震設計指針・同解説、1999
- [3.1.3] Saatcioglu, M., and Razvi, S. R., "Strength and Ductility of Confined Concrete," Journal of Structural Engineering, ASCE, V. 118, No. 6, pp. 1590-1607, 1992
- [3.1.4] 建築行政情報センター、日本建築防災協会:2020 年度版建築物の構造関係技術基準解説書、2021.7
- [3.1.5] 今阪剛、中村聡宏、勅使川原正臣:鉄筋コンクリート造二次壁付き架構の耐力と復元力特性の 評価、コンクリート工学年次論文集、Vol.36、No.2、pp.289-294、2014
- [3.1.6] 日本建築防災協会:既存鉄筋コンクリート造建築物の耐震診断基準・耐震改修設計指針・同解 説、2017.7
- [3.1.7] 日本住宅・木材技術センター: 2016 年版 CLT を用いた建築物の設計施工マニュアル、2016.10
- [3.1.8] 日本建築学会:壁式鉄筋コンクリート造設計・計算規準・解説、2015.12
- [3.1.9] 日本建築学会:鉄筋コンクリート構造保有水平耐力計算規準・同解説、2021
- [3.1.10] 宮武敦ほか:スギを用いて製造したクロスラミネィティド・ティンバー(CLT)の強度性能 その1 試験の概要、日本建築学会大会学術講演梗概集、pp.115-116、2013.8
- [3.1.11] 井道裕史ほか:スギを用いて製造したクロスラミネィティド・ティンバー(CLT)の強度性 能 その6 縦圧縮およびめり込みに対する性能、日本建築学会大会学術講演梗概集、pp.125-126、2013.8
- [3.1.12] 荒木康弘ほか:スギを用いて製造したクロスラミネィティド・ティンバー(CLT)の強度性 能 その8 (実大)面内せん断性能、日本建築学会大会学術講演梗概集、pp.129-130、2013.8
- [3.1.13] 渡部博ほか:スギを用いて製造したクロスラミネィティド・ティンバー(CLT)の強度性能 その9 (小型) 面内せん断性能、日本建築学会大会学術講演梗概集、pp.131-132、2013.8
- [3.1.14] 中島昌一ほか: CLT の面内せん断性能に層構成とラミナ等級が与える影響、日本建築学会大 会学術講演梗概集、pp.25-26、2015.9
- [3.1.15] 槌本敬大ほか: CLT の面内せん断強度・弾性係数の試験法に関する考察、日本建築学会大会 学術講演梗概集、pp.111-112、2017.8
- [3.1.16] 日本建築センター: 2009 年版プレストレストコンクリート造技術基準解説及び設計・計算例、 2009
- [3.1.17] 日本建築防災協会:土砂災害特別警戒区域内の建築物に係る構造設計・計算マニュアル、2019
- [3.1.18] 井上一朗:建築鋼構造の理論と設計、京都大学学術出版会、2003
- [3.1.19] 日本建築学会:鉄筋コンクリート構造計算規準・同解説(2018)、2018.12

3.2 S+CLT架構

3.2.1 構造設計

構造解析モデル

① はじめに

本資料で扱う CLT 耐震壁の構造システムは、鉄骨造による柱梁のフレームに対して、CLT の上下 端の四隅に軸接合部、上下端に中央にせん断接合部を設けて接続し、水平力に対してのみ抵抗させる ことを企図したものである。鉄骨造による柱梁のフレームは、柱梁接合部を剛接合とするラーメンフ レームの場合と、ピン接合するピンフレームの場合のいずれに対する適用も想定している。CLT 耐 震壁の破壊モードは、CLT の軸接合部およびせん断接合部を弾性相当に留めて鉄骨梁を塑性化させ るモードと、CLT の軸接合部の塑性化を許容するモードを想定している。

本資料で次に示す構造解析モデルの設定方法は、後述する実大実験との比較によって実態の荷重変 形挙動を概ね推定できることが確認されたものである。但し、ここで示す方法はあくまでも一例であ り、類似の構造システムであったとしても多種多様なモデル化の設定方法が存在するはずなので、構 造システムの抵抗メカニズムに応じて適切に荷重変形挙動を再現するものであれば、その他の方法で も構わない。

構造解析モデルの設定方法

ここでは、CLT 耐震壁まわりの構造解析モデルの設定方法についてのみ示す。その他の部位のモ デル化は他の図書を参照されたい。図 3.2.1 に構造解析モデルの概念図を示す。

- 鉄骨の柱梁部材は、一般的な梁要素として線材置換してモデル化する。鉄骨の柱梁接合部は、
 塑性ヒンジの位置や変形が実状を模擬する、あるいは、安全側に評価できるような適切なモデル化を行う。
- CLT は、その材心位置において、一般的な梁要素として線材置換してモデル化する。梁要素の 上下端は CLT のせん断接合部の剛心位置とし、梁要素と直交する剛梁を設ける。
- CLTの軸接合部およびせん断接合部はそれぞれの剛心位置においてバネ要素を設けて、CLTの 上下端の剛梁と接続し、鉄骨梁の梁要素までは接続部位の変形を適切に考慮して接続する。CLT の木口面の支圧によって圧縮抵抗させる場合には、支圧特性を持つバネ要素を連続的に設ける。

図 3.2.1 構造解析モデルの概要図

③ 実験値との比較による構造解析モデルの妥当性検証

設定方法を前述した構造解析モデルの妥当性を検証するため、ロの字の鉄骨フレームに CLT 耐震 壁を組み込んだ部分架構に対して行った水平加力実験を取り上げて、構造解析モデルによる解析値と 実験値との比較を行った。比較に用いた水平加力実験の方法や結果の詳細は「実験資料」に示す。な お、これらの成果は文献1と文献2において公表されている。

先述した通り、本資料内で扱う CLT 耐震壁の破壊モードは2種類あり、CLT の軸接合部およびせん断接合部を弾性相当に留めて鉄骨梁を塑性化させるモードと、CLT の軸接合部の塑性化を許容するモードである。後者のモードは鉄骨梁が塑性化する場合も含まれるが、解析値との比較に用いる水平加力実験では、図 3.2.2 に示すように [a] 鉄骨梁降伏(S降伏)と [b] CLT 軸接合部降伏(S-CLT の接合部降伏)に塑性化部位が限定される場合の挙動を再現している。以下では、[b] の場合を部分架構実験①¹⁾、[a] の場合を部分架構実験②²⁾と称す。

図3.2.2 比較に用いる水平耐力実験における試験体と再現した2種類の破壊モード

まず、解析値と実験値の比較に先立ち、試験の位置づけや試験体の概要について説明しておく。 部分架構実験①¹⁾については、主として軸接合部の仕様が異なる計3種類の試験体に関する比較 を示している。軸接合部を鋼板挿入ドリフトピン接合部とし鋼板挿入ドリフトピン接合部において降 伏する仕様、軸接合部を引きボルト接合部とし引きボルト接合部において降伏する仕様、軸接合部を の鋼板挿入ドリフトピン接合部とし鉄骨フレームとの接続部の鋼材において降伏する仕様、の3種類 である。1つ目と2つ目の鋼板挿入ドリフトピン接合や引きボルト接合は、CLTの軸接合部において 標準的な接合法であり、構造性能に関する知見も蓄積されているものであるが^{例えば3),4)}、その荷重変 形特性は他の木質構造の接合部と同様にスリップ形の復元力特性を持つことが知られており、エネル ギー吸収性能は鉄骨梁降伏の場合よりも小さくなるものである。一方で、3つ目の仕様は、鉄骨梁と の接続部の鋼材を先行降伏させて履歴特性を紡錘形の復元力特性とすることで、従来のように鋼板挿 入ドリフトピン接合や引きボルト接合で降伏する場合よりもエネルギー吸収性能を向上させることを 企図したものである。

部分架構実験②²⁾については、鉄骨フレームが曲げ降伏する仕様と鉄骨フレームがせん断降伏す る仕様の計2種類の試験体に関する比較を示している。CLT 耐震壁が片方の柱に寄って配置されたり、 CLT が幅広になったりした場合に、鉄骨梁が短スパンとなってせん断降伏することが想定されるが、 その場合に曲げ降伏する場合と比較して、塑性変形領域における履歴曲線の違いを把握することを目 的のひとつとしている。CLT の軸接合部およびせん断接合部には、木質構造において汎用的な接合 法である鋼板挿入ドリフトピン接合を用いており、軸接合部は応力方向によらず引張側・圧縮側とも に鋼板挿入ドリフトピン接合で抵抗させる仕様としており、比較的単純な抵抗メカニズムとなるよう にしたものである。

a. 試験体の仕様

- 1) 部分架構実験①¹⁾
- 図 3.2.3 に試験体の概形、図 3.2.4 にせん断接合部の仕様、表 3.2.1 に試験体一覧、図 3.2.5 に 軸接合部の仕様を示す。梁端は所謂ピン接合である。
- 軸接合部の仕様が異なる下記の-1~-3の3種類の試験体が検討対象である。
 - -1. <u>呼称:DP</u>…ドリフトピン接合部で降伏する仕様
 - -2. <u>呼称:16R</u>…ドリフトピン接合部と鉄骨フレームの接続部の鋼材で降伏する仕様
 - -3. 呼称:引きボルト…引きボルト接合部で降伏する仕様

表 3.2.1 試験体一覧

_		梁	柱	水平抵抗部材	水平抵抗部材と鉄骨の接合
-	16R	H-400×200×8×13	H-340×250×9×14	CLT (S90-7-7:A種構成)	ドリフトピンφ20(SS400)
-	DP 引きボルト	(SN490B)	(SS400)	幅2000mm	ドリフトピンφ20(SS400) 引きボルトM30(ABR400)

図 3.2.5 軸接合部の仕様

- 2) 部分架構実験2²⁾
- 図 3.2.6 に試験体の概形、表 3.2.2 に試 験体一覧、図 3.2.7 に軸接合部の仕様、図 3.2.8 に共 通のせん断接合部の仕様を示す。梁端は剛接合である。
- 接合部の仕様が異なる下記の-1~-3の3種類の試験体が検討対象である。
 - -1. 呼称:曲げ…鉄骨フレームが曲げ降伏する仕様
 - -2. 呼称: せん断…鉄骨フレームがせん断降伏する仕様

図 3.2.7 軸接合部の仕様

図 3.2.8 せん断接合部の挿入鋼板まわりの仕 様

b. 各要素の特性値

1) 鋼材

表 3.2.3 と表 3.2.4 に素材試験の結果を示す。これらを用いて鉄骨フレームの荷重変形特性のモ デル化を行った。

表3.2.3 鋼材の素材試験結果(部分架構実 表3.2.4 鋼材の素材試験結果(部分架構

験①)

	夫	颗(2))	
 		nh (b ml l	and distant and

鋼種	お回 汉	実測板厚,径	降伏耐力	引張耐力	破断伸び
到刊作里	似序、住	(mm)	(N/mm^2)	(N/mm^2)	(%)
	9	8.9	314	460	29
\$\$400	16	15.7	282	450	29
33400					
	φ20	19.9	310	450	31
ABR400	M30	27.5	292	424	35
SN/400P	H400フランジ	13.3	405	527	26
511490B	H400ウェブ	7.9	477	565	22
55400	H340フランジ	14.1	295	449	31
55400	H340ウェブ	8.7	334	462	29

鋼種	板厚、径	実測板厚、径 (mm)	降伏耐力 (N/mm ²)	引張耐力 (N/mm ²)	破断伸び (%)
	6	6.0	358	472	28
SS400	9	9.0	279	430	29
	16	16.0	276	422	32
	25	24.5	263	430	33
	φ20	19.9	315	463	31

2) CLT母材

- 表 3.2.5 に CLT を置換した線材に入力する特性値を示す。弾性部材としてモデル化した。
- ヤング係数は、試験体から切り出したラミナに対する曲げ実験の結果から得た曲げヤング係数 を用いて、2016 年版 CLT を用いた建築物の設計施工マニュアル³⁾ に示される方法により算出し た値である。
- せん断弾性係数は、架構実験の結果から求めた値である。

		ヤング係数	せん断弾性係数
		[kN/mm ²]	[kN/mm ²]
部分架構実験①	S90-7-7	7.4	0.84
部分架構実験②	S90-9-9	6.1	0.81

表 3.2.5 CLT を置換した線材に入力する特性値

3) CLT 接合部

- ドリフトピン接合部の1本あたりの特性値を表 3.2.6 に、荷重変形関係の骨格曲線を図 3.2.9 に示す。これを基準にして強度を本数倍して接合部をモデル化した。鋼板先孔のクリアランス によるすべり 0.5mm 分を分離して設定して比較した。
- 引きボルト接合部の特性値を表 3.2.7 に、荷重変形関係の骨格曲線を図 3.2.10 に示す。圧縮側 は CLT 木口面を 10 分割して、各分割要素の中央に負担長さ 200mm の圧縮バネを連続的に配置 してモデル化する。このモデル化は文献5が参考とした。
- ドリフトピン接合部の特性値の算出に用いたドリフトピンの降伏強さ(表中、"降伏耐力") は表 3.2.3 と表 3.2.4 に示す素材試験から得た値を用いた。ヤング係数は公称値である 205kN/mm²を用いた。
- ドリフトピン接合部の特性値の算出に用いた CLT ラミナの支圧剛性および支圧強度は、表 3.2.8 に示す要素実験より得た繊維平行方向の値を基準にして算出した。
- ドリフトピン接合部の荷重変形特性の骨格曲線は2次元 FEM 解析より得た荷重変形関係をマ ルチリニア置換して求めた。荷重変形関係の算出方法は、文献6と基本的には同様であるた め、詳細はここでは割愛する。

	CLT	ドリフトピン径	挿入鋼板	部位			1	2	3	4
		[mm]	[mm]				[-]	[-]	[-]	[-]
部分架構実験①	S90-7-7	20	16	軸接合部	p_i	[kN]	50.75	62.91	73.31	77.73
					δ_i	[mm]	1.17	3.75	17.53	30.50
		20 16	16	せん断接合部	p_i	[kN]	33.44	52.42	71.23	77.24
			10		δ_i	[mm]	1.05	3.25	18.44	30.50
部分架構実験②	S90-9-9	20	16	軸接合部	p_i	[kN]	37.70	66.84	74.48	87.10
					δ_i	[mm]	1.20	2.94	12.97	30.50
		20 16	16	井/ 断拉公如	p_i	[kN]	58.90	80.57	83.92	85.49
			ビル開致口印	δ_i	[mm]	1.33	3.45	20.44	30.50	

表 3.2.6 1本あたりのドリフトピン接合部の荷重変形関係の特性値

図3.2.9 1本あたりのドリフトピン接合部の荷重変形関係の骨格曲線

荷重方向	抵抗要素	k	k _{bt}	k _{ew}	<i>p</i> ₁	<i>p</i> ₂
		[kN/mm]	[kN/mm]	[kN/mm]	[kN]	[kN]
引張側	ボルト	239	387	624	328	347
圧縮側	支圧	960	-	-	984	984

表 3.2.7 引きボルト接合部の荷重変形関係の特性値

* k_{bt}: ボルト伸び分の剛性, k_{ew}: アンカープレートのCLT定着部の支圧変形分の剛性

図 3.2.10 引きボルト接合部の骨格曲線

表 3.2.8 ドリフトピン接合部の特性値の算出に用いた CLT ラミナの繊維方向ヤング係数と支

圧強度

		ラミナの繊維方向ヤング係数	ラミナの繊維方向支圧強度
		[kN/mm ²]	[N/mm ²]
部分架構実験①	S90-7-7	13.0	42.0
部分架構実験②	S90-9-9	11.0	51.0

- c. 比較する実験値
- ・ 比較する実験値を得た実験方法と荷重・変位の定義と載荷スケジュールを図 3.2.11 と図 3.2.12 に示す。加力方法が、部分架構実験①と部分架構実験②で多少異なることに注意されたい。
- 図 3.2.13 と図 3.2.14 に比較する実験値を示す。

図 3.2.11 実験方法と荷重・変位の定義と載荷スケジュール(部分架構実験①)

図 3.2.12 実験方法と荷重・変位の定義と載荷スケジュール(部分架構実験②)

図 3.2.13 荷重変位関係(部分架構実験①)

[参考文献]

1) 三木徳人他:履歴特性の改善を目指した接合部を有する CLT- 鉄骨混構造架構の繰り返し載荷実験、 日本建築学会技術報告集、第65号、pp.213-218、2021.2

2) 三木徳人他:鉄骨梁降伏型の CLT-S 混構造架構の繰り返し載荷実験、日本建築学会大会学術講演 梗概集、pp.139-140、2021.9

3) 清水 庸介他: CLT パネル工法における鋼板挿入ドリフトピン接合の集合型破壊についての検討 その1ドリフトピンのピッチと端距離等の影響を確認するための試験、日本建築学会大会学術講演梗概 集、pp.197-198、2020.9

4) CLT 設計施工マニュアル編集委員会: 2016 年版 CLT を用いた建築物の設 計施工マニュアル,公 益財団法人日本住宅・木材技術センター, 2016.10

5) 安曇良治他: CLT パネル工法の構造設計法拡充・合理化に関する検討 その 2 MS 要素を用いた構造モデル簡略化,構造III, 2019.9

6) グナワンインドラ他:鋼板挿入ドリフトピン接合部のせん断性能に関する検討 その1 ドリフトピン長さと偏りに着目した弾塑性床上の梁モデルによる性能比較,構造Ⅲ, 2019.9

d. 適合性の検証

1) はじめに

ここでは、鉄骨フレームと CLT 耐震壁を組み合わせた部分架構を対象として、水平加 力実験における実態の荷重変形挙動に対する適合性の高い解析モデルの検討を行い、作 成したモデル及び解析結果について示す。

なお、モデル作成・解析には、SNAP ver.8.0.0.6【任意系立体フレーム弾塑性解析ソフト】を用いた。

2) 実験 1-1 (試験体呼称: DP)

ア)モデル図

図3.2.15にモデル図を示す。梁・柱間は半剛接合とし、剛域は設定していない。半剛接 合の回転剛性は『履歴特性の改善を目指した接合部を有するCLT-鉄骨混構造架構の繰り 返し載荷実験(日本建築学会技術報告集)』の実験結果のモーメント図と解析結果を比較 し、回転剛性を調整していき7000kNm/radと設定した。

CLTの壁と鉄骨梁の接合であるドリフトピン接合部分は、ドリフトピン自体の挙動を 表現したスプリング1・2と、鋼板先孔のクリアランスによる初期すべりを考慮するた め、すべりを表現したスプリング3・4を直列に配置している。

図3.2.15 モデル図
イ)部材断面及びスプリング

表 3.2.9 に部材断面及びスプリングのリストを示す。鋼材のヤング係数は 205kN/mm²、 せん断弾性係数は 79kN/mm²とし、公称値を採用した。CLT のヤング係数は 7.4kN/mm²、 せん断弾性係数は 0.84kN/mm²とし、表 3.2.5 記載の値とした。またスプリングについて、 スプリング1・2 は表 3.2.6 のドリフトピン 1 本の剛性にそれぞれ 6 本・13 本を乗じて 算出した。スプリング3・4 は、滑り部分で直列にバネを足し合わせた時に、滑りの部分 の変形が卓越するように、任意のなるべく大きな値を入れている。

表3.2.9 部材断面及びスプリング

はり

名称	実験1梁	剛な境界梁
形状	H形強軸	箱形
端部	全断面	全断面
断面		
寸法(mm)	400x200x8. 0x13. 0 (13. 00)	200x200x50. 0x50. 0
材質	SN490	SN490

名称	実験1柱
形状	H形弱軸
端部	両端
断面	
寸法(mm)	340x250x9. 0x14. 0
鉄骨	SS400

木部材断面リスト

	-	
7		
-		
	_	

名称	実験1CLT
端部	両端
断面	
Dz×Dy (mm)	2000x210
強軸方向	z方向
強軸方向の向き	左向き
材質	木
使用環境	Ⅲ(通常)

スプリングリスト

**	剛性(kN	/mm, kN. m/ı	座標系				
留ち	TX	TZ	RY	種別	局部座標		
1	0.00	454.48	0.00	基準座標系	-		
2	790.40	0.00	0.00	基準座標系	-		
3	0.00	20000.00	0.00	基準座標系	-		
4	20000.00	0.00	0.00	基準座標系	-		

ウ)弾塑性モデルの設定

表3.2.10に鉄骨の梁・柱(フレーム)の弾塑性モデルの設定、表3.2.11に単軸バネモデルの設定値について示す。また、図3.2.16に復元力特性の概要図を示す。

梁について、単軸バネモデルとし、復元力特性は曲げ・せん断ともに、RO3モデルとした。梁の降伏モーメントは、表3.2.3に示すフランジ(13mmSN490)の材料実験値に断面 係数を乗じた値に座屈低減係数をかけている。座屈による低減については、SNAP Ver8 テクニカルマニュアルp.6-112・113に示す。梁の降伏せん断力は、表3.2.3に示すウェブ (8mmSN490)の材料実験値を√3で除した値に、ウェブの断面積を乗じて算出した。2次剛 性比等その他のパラメータは、『5.3弾塑性モデルの設定』(p.28)に示す、実験2で設定 した値と同様とした。

柱について、曲げはMSモデルとし、鉄骨の復元力特性はSS3とし、せん断は単軸バネ モデルとし、復元力特性はBL2とした。

前述した通り、CLTの壁と鉄骨梁の接合であるドリフトピン接合部分は、ドリフトピン自体の挙動を表現したスプリングと、鋼板先孔のクリアランスによる初期すべりを考慮するため、すべりを表現したスプリングを直列に配置している。

表3.2.12にスプリングの単軸バネモデルの設定値について示す。また、図3.2.17に復元 力特性の概要図を示す。

ドリフトピン部分は、復元力特性をWS4とし、滑り部分は、復元力特性をEM0とした。 ドリフトピン部分の骨格曲線部分(剛性変化点の耐力及び剛性比等)は、表3.2.6のドリ フトピン1本の値に試験体の本数を乗じて算出した。滑り部分(EM0)の滑りの値は表 3.2.6に記載の0.5mmとした。2次剛性比等その他のスプリングのパラメータは、実験値を 参照して設定した。

復元力特性モデルの詳細については、SNAP Ver8テクニカルマニュアルに記載している。

	名称	構造	日 (由 デ		せん 断			軸
			モデル	復元力	降伏応力度(N/m m ²)	モデル	復元力	降伏応力度(N/m m ²)	
梁	実験1_梁左右	S	単軸バネ	RO3	405 ※	単軸バ ネ	RO3	477/√3	-
	実験1_梁中央	S	単軸バネ	RO3	405 ※	単軸バ ネ	RO3	477/√3	-
柱	実験1	s	MSモデ ル	鉄骨/鉄 筋 SS3	フランジ:295 ウェブ:334	単軸バ ネ	BL2	295/√3	弾 性

表3.2.10 フレームの弾塑性モデルの設定

※単軸バネモデルの降伏モーメントは、座屈を考慮し、この値に断面係 数を乗じた値に座屈低減をしている

表3.2.11 フレームの単軸バネモデルの設定

(※表中"名称"は、図3.2.16モデル図中の緑色文字:単軸バネモデル名称と対応) 単軸バネモデルーはり

	夕社	括印		正側(k	N, kN. m)		負側(kN,kN.m)				
	石竹	1至 /辺		Fy	α	β	Fc'	Fy'	α΄	β'	
Myi		修正Ramberg-Osgood型(RO3)	0.00	521.81	1.000	0.005	0.00	521.81	1.000	0.005	
Муj		修正Ramberg-Osgood型(RO3)	0.00	521.81	1.000	0.005	0.00	521.81	1.000	0.005	
Qzi	実験1_梁左右	修正Ramberg-Osgood型(RO3)	0.00	823.99	1.000	0.005	0.00	823.99	1.000	0.005	
Qzj		修正Ramberg-Osgood型(RO3)	0.00	823.99	1.000	0.005	0.00	823.99	1.000	0.005	
Ν		弹性(EL1)	—	-	—	—	—	-	-	—	
Myi		修正Ramberg-Osgood型(RO3)	0.00	513.63	1.000	0.005	0.00	513.63	1.000	0.005	
Myj		修正Ramberg-Osgood型(RO3)	0.00	513.63	1.000	0.005	0.00	513.63	1.000	0.005	
Qzi	実験1_梁中央	修正Ramberg-Osgood型(RO3)	0.00	823.99	1.000	0.005	0.00	823.99	1.000	0.005	
Qzj		修正Ramberg-Osgood型(RO3)	0.00	823.99	1.000	0.005	0.00	823.99	1.000	0.005	
N		弹性(EL1)	-		-	- H	-	—	—	-	

	夕五			モデ	ll/N° :	ラメータ			
	口小	p1	p2	p3	p4	p5	p6	p7	d(mm, rad)
Myi		0.000	11.000	0.000	-	-	-	-	_
Myj		0.000	11.000	0.000	-	-	-	-	_
Qzi	実験1_梁左右	0.000	11.000	0.000	-	-	-	-	—
Qzj		0.000	11.000	0.000	-	-	-	-	—
N		—	_	_	-	-	(-)	-	—
Myi		0.000	11.000	0.000	-	-	-	-	-
Myj		0.000	11.000	0.000	-	-	-	-	_
Qzi	実験1_梁中央	0.000	11.000	0.000	-		-	-	_
Qzj		0.000	11.000	0.000	-	-	$\left - \right $		—
N		-	-	_	-	-	-	-	—

単軸バネモデルー柱

	反开	千手 中山		正側(kN	, kN	. m)	負側(kN,kN.m)			モデ゛ルハ゜ラメータ								
	白竹	「生」フリ	Fc	Fy	α	β	Fc'	Fy'	α'	β'	p1	p2	p3	p4	p5	p6	p7	d(mm, rad)
Myi		弾性(EL1)	-	_	-	_	-	-	-	-	_	-	-	-	-	-	-	
Myj		弾性(EL1)	-	—	-	-	-	-	-	-	-	-	-	-	-	-	-	—
Qzi	実験1	剛性低減型A(BL2)	-	794.82	-	0.005	-	794.82	-	0.005	0.000	-	-	-	-	-	-	—
Qzj		剛性低減型A(BL2)	-	794.82	-	0.005	-	794.82	-	0.005	0.000		-	-	-	-	-	_
N		弾性(EL1)	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-

単軸バネモデル:RO3 MSモデル:SS3

図3.2.16 復元力特性モデル

単軸バネモデル:BL2

表3.2.12 スプリングの単軸バネモデルの設定 (※表中"名称"は、図3.2.17モデル図中の緑色文字:単軸バネモデル名称と対応)

単軸バネモデルースプリング

夕称		千禾 中山	Ī	王側(kN,	kN.m)		負側(kN,kN.m)				
	白你	个里 万小	Fc	Fy	α	β	Fc'	Fy'	α΄	β'	
TX		弾性(EL1)	—	—	_	Ι	—	-	Ι	—	
TZ	実験1_DP-6-T_滑り	木造用強度低下4折線モデル(WS4)	304.50	377.46	0.062	0.010	-	_	-	-	
RY		弾性(EL1)	_	—		-	-	—	-		
TX		木造用強度低下4折線モデル(WS4)	434.72	681.46	0.142	0. 020	-	- T	Ι	_	
TZ	実験1_DP-13-Q_滑り	実験1_DP-13-Q_滑り 弾性(EL1)		-	_	_	_	_	_	-	
RY		弾性(EL1)	-	_		_	—	-	_	-	
TX		マルチリニア弾性型(EMO)	1000.00	0.00	1.000	1.000	0.00	0.00	1.000	1.000	
TZ	SLIP-X	弾性(EL1)	-	_	-	_	-	_	_	-	
RY		弾性(EL1)	-	-	-	_	-	-	_		

夕敌		千禾 只山	Ī	E側(kN,	kN.m)	負側(kN,kN.m)				
	白你	1 「生力」	Fc	Fy	α	β	Fc'	Fy'	α'	β'
ТΧ		弾性(EL1)	_	-	_	_	—	-	_	
ΤZ	SLIP-Z	マルチリニア弾性型(EMO)	1000.00	0.00	1.000	1.000	0.00	0.00	1.000	1.000
RY		弾性(EL1)	-	-	· _ ·	_	-	-	—	_

	友社				モデ゛ルノ	ヽ゚ラメータ			
	石竹	p1	p2	p3	p4	p5	p6	p7	d(mm, rad)
ΤX		_	_	<u> </u>	_	· — ·	—	-	—
ΤZ	実験1_DP-6-T_滑り	4.675	0.004	0. 200	1.100	1.000	0.000	-	—
RY		_	-	—	-	_	—	1	—
ΤX		5.674	0.008	0. 250	1.000	1.000	0.142	I	—
ΤZ	実験1_DP-13-Q_滑り	—	—	_	_		—	-	—
RY		_	_	<u> </u>	_		_	-	_
ТΧ		1.000	1.000	0.000	-	_	—	I	0.50
ΤZ	SLIP-X	_	_	_	-		_	-	_
RY		_	—	_	_		—	-	_
ΤX		_	_		_	_	_	ļ	_
ΤZ	SLIP-Z	1.000	1.000	0.000	_	_	_	-	0. 50
RY		-	-	—	—	—	—	-	_

エ) 解析結果(荷重変形角関係)

図3.2.18及び図3.2.19にSNAPの計算値と実験値の荷重変形角関係を示す。また図3.2.20 にループごとの計算値と実験値の荷重変形角関係を示す。

図3.2.18 荷重変形角関係

図3.2.19 荷重変形角関係(第1象限)

B.構造分野

図3.2.20 ループごとの荷重変形角関係

オ)解析結果(ヒンジ図・応力図)

図3.2.21にヒンジ図(塑性率図)を、図3.2.22に応力図を示す。図は、静的増分解析の 最終ループの最大変位時のものである。なお、鉄骨の場合は、ヒンジ図△のマークはせ ん断降伏、○は曲げ降伏、◆はスプリングの並進方向(TX・TY・TZ)の降伏を示している。 なお、梁に黄色のマークがあるが、復元力特性の設定上Fc=0としているため、黄色の○・ △のマークが発生しているが、ソフト上の表現であり、これらは、降伏していない。図 3.2.22より、ドリフトピンの引張接合部で降伏している。

塑性率[ヒンジ発生ステッブ] -3. 656[1273187] 3. 771 [-1272153] ₩ 200 . 681 [-1272731] 🔬 3. 571[1273546]

3) 実験 1-2 (試験体呼称: 16R)

ア)モデル図

図3.2.23にモデル図を示す。鉄骨の柱・梁(フレーム)の接合条件・仕様等は実験1-1 と同様とした。

CLTの壁と鉄骨梁の接合部分は、鉄骨フレームの接続部の鋼材の塑性化部を表現した スプリング1と、ドリフトピン自体の挙動を表現したスプリング2・3と、鋼板先孔の クリアランスによる初期すべりを考慮するため、すべりを表現したスプリング4・5を 直列に配置している。

イ)部材断面及びスプリング

表3.2.13に部材断面リスト及びスプリングのリストを示す。鋼材、CLTのヤング係数及 びせん断弾性係数は実験1-1と同様とした。また、スプリングについて、スプリング1の 剛性は、塑性化部の断面積を960mm²(厚み16mm×幅60mm)、長さLを110mmとし、

k=AE/L=960*205/110=1789.09kN/mmとした。スプリング2・3は表3.2.6のドリフトピン 11本の剛性にそれぞれ12本・13本を乗じて算出した。スプリング4・5は、滑り部分で直 列にバネを足し合わせた時に、滑りの部分の変形が卓越するように、任意のなるべく大 きな値を入れている。

はり

木部材断面リスト

柱	
名称	実験1CLT
端部	両端
断面	

Dz × Dy (mm)	2000x210
強軸方向	z方向
強軸方向の向き	左向き
材質	木
使用環境	Ⅲ(通常)

スフ゜リンク゛リスト

来旦	剛性(kN/n	mm, kN. m/	(rad)	座標	系
留丂	TX	TZ	RY	種別	局部座標
1	0.00	239.00	0.00	基準座標系	T
2	790.40	0.00	0.00	基準座標系	-
3	20000.00	0.00	0.00	基準座標系	_
4	0.00	960.00	0.00	基準座標系	

ウ)弾塑性モデルの設定

表3.2.14に鉄骨の梁・柱(フレーム)の弾塑性モデルの設定、表3.2.15に単軸バネモデルの設定値について示す。また、図3.2.24に復元力特性の概要図を示す。

梁・柱については、実験1-1と同様の設定とした。

表3.2.16にスプリングの単軸バネモデルの設定値について示す。また、図3.2.25に復元 力特性の概要図を示す。

鋼材の塑性化部について、単軸バネモデルとし、復元力特性はBL2とした。スプリングの降伏耐力は、表3.2.3の鋼材の降伏耐力(282kN/mm²)に断面積960mm²を乗じて算出した。 2次剛性等は、実験結果を参照して設定した。

ドリフトピン部分と、滑り部分の設定は、実験1-1と同様の設定とした。本数に関しては、それぞれ12本・13本としている。

復元力モデルの詳細については、SNAP Ver8テクニカルマニュアルに記載している。

	名称	構造	₫ (*	由 プ		せ ^難	ん fi		軸
			モデル	復元力	降伏応力度(N/m m ²)	モデル	復元力	降伏応力度(N/m m ²)	
梁	実験1_梁左右	S	単軸バネ	R03	405※	単軸バ ネ	R03	477/√3	-
	実験1_梁中央	S	単軸バネ	R03	405※	単軸バ ネ	R03	477/√3	-
柱	実験1	S	MSモデル	鉄骨/鉄 筋	フランジ: 295 ウェブ: 334	単軸バ ネ	BL2	295/√3	弾 性

表3.2.14 フレームの弾塑性モデルの設定

※単軸バネモデルの降伏モーメントは、座屈を考慮し、この値に断面係 数を乗じた値に座屈低減をしている

表3.2.15 フレームの単軸バネモデルの設定

(※表中 "名称"は、図3.1-1モデル図中の緑色文字:単軸バネモデル名称と対応) 単軸バネモデルーはり

	夕称	千重 모山		正側(kN	N, kN. m)			負側(kM	1, kN. m)	
	1日 17小	「生力」	Fc	Fy	α	β	Fc'	Fy'	α'	β'
Myi		修正Ramberg-Osgood型(RO3)	0.00	521.81	1.000	0.005	0.00	521.81	1.000	0.005
Муj		修正Ramberg-Osgood型(RO3)	0.00	521.81	1.000	0.005	0.00	521.81	1.000	0.005
Qzi	実験1_梁左右	修正Ramberg-Osgood型(RO3)	0.00	823.99	1.000	0.005	0.00	823. 99	1.000	0.005
Qzj		修正Ramberg-Osgood型(RO3)	0.00	823.99	1.000	0.005	0.00	823.99	1.000	0.005
Ν		弾性(EL1)	-	-	-	_	-	_	-	-
Myi		修正Ramberg-Osgood型(RO3)	0.00	513.63	1.000	0.005	0.00	513.63	1.000	0.005
Муj		修正Ramberg-Osgood型(RO3)	0.00	513.63	1.000	0.005	0.00	513.63	1.000	0.005
Qzi	実験1_梁中央	修正Ramberg-Osgood型(RO3)	0.00	823. 99	1.000	0.005	0.00	823. 99	1.000	0.005
Qzj		修正Ramberg-Osgood型(RO3)	0.00	823. 99	1.000	0.005	0.00	823.99	1.000	0.005
N		弹性(EL1)	-	-	-	-	-	-	-	-

	夕五			モデ゛	۱۸ [°]	ラメータ			
	口小	p1	p2	p3	p4	p5	p6	p7	d(mm, rad)
Myi		0.000	11.000	0.000	-	-	-	-	_
Myj		0.000	11.000	0.000	-	-	-	-	-
Qzi	実験1_梁左右	0.000	11.000	0.000	-	-	-	· — ·	-
Qzj		0.000	11.000	0.000	-	-	-	-	_
Ν		-	-	-	-	-	-	-	_
Myi		0.000	11.000	0.000	-	-	-	· ·	—
Муj		0.000	11.000	0.000	-	-	-	-	_
Qzi	実験1_梁中央	0.000	11.000	0.000	-	-	-	-	-
Qzj		0.000	11.000	0.000	-	-	-	-	-
N		—	—	-	_	-	-	-	—

単軸バネモデルー柱

	夕社	括见山		正側(kN	, kN	. m)		負側(kN	, kN.	m)				ŦŦ	1LN° :	ラメータ	1	
	石竹	个里 /小」	Fc	Fy	α	β	Fc'	Fy'	α'	β'	p1	p2	p3	p4	p5	p6	p7	d(mm, rad)
Myi		弾性(EL1)	-	—	-	—	-	-	-	-	-	-	-	-	-	Τ	-	—
Myj		弾性(EL1)	-	-	-	—	-	-	-	-	-	-	-	-	-	-	-	—
Qzi	実験1	剛性低減型A(BL2)	-	794.82	-	0.005	-	794.82	-	0.005	0.000	-	-	—	-	Ι	-	-
Qzj		剛性低減型A(BL2)	-	794.82	-	0.005	-	794.82	-	0.005	0.000	-	-	-	-	-	-	—
N		弾性(EL1)	-	-	-	_	-	-	-	-	-		-	-	-	-	-	_

MSモデル:SS3 図3.2.24 復元力特性モデル

単軸バネモデル:BL2

表3.2.16 スプリングの単軸バネモデルの設定

(※表中 "名称"は、図3.2.25モデル図中の緑色文字:単軸バネモデル名称と対応) 単軸バネモデルースプリング

	夕社	千舌 모山	ī	王側(kN,	kN.m)			負側(kl	N, kN. m)	
	白小	↑里 /小」	Fc	Fy	α	β	Fc'	Fy'	α΄	β'
TX		弾性(EL1)	_	_	_	_	_	_	_	_
TZ	実験1_16R-T	剛性低減型A(BL2)	-	270.72	_	0.010	—	270.72	-	0.010
RY		弾性(EL1)	_	—	_	_	-	—	-	—
TX		木造用強度低下4折線モデル(WS4)	434.72	681.46	0.142	0. 020	-	_	-	-
TZ	実験1_DP-13-Q_滑り	弾性(EL1)	_	_	_	_	-	_	-	_
RY		弾性(EL1)	_	—	—	—		—	—	—
TX		弾性(EL1)	_	_	_	_	—	_	_	_
TZ	実験1_DP-12-T_滑り	木造用強度低下4折線モデル(WS4)	609.00	754.92	0.062	0.010	—	_	_	-
RY		弾性(EL1)	-	-	_	-	-	_	-	-

	夕敌	千舌 兄山	Ī	E側(kN,	kN.m)			負側(kl	N, kN. m)	
	口小	「生力」	Fc	Fy	α	β	Fc'	Fy'	α΄	β'
TX		マルチリニア弾性型(EMO)	1000.00	0.00	1.000	1.000	0.00	0.00	1.000	1.000
TZ	SLIP-X	弾性(EL1)		—	_	—	Ι		_	_
RY		弹性(EL1)		—	_	—	Ι	_	—	—
TX		弾性(EL1)	-	_	—	_	Ι	-	—	—
TZ	SLIP-Z	マルチリニア弾性型(EMO)	1000.00	0.00	1.000	1.000	0.00	0.00	1.000	1.000
RY		弹性(EL1)	_	_	_	_	_	_		_

	夕社				モデ゛ルィ	ヽ゚ラメータ			
	白你	p1	p2	p3	p4	p5	p6	p7	d(mm, rad)
TX		-	-		_	_	-	-	_
TZ	実験1_16R-T	0.000	_		_	_	_	—	—
RY			-		_	_	_	-	_
TX		5.674	0.008	0. 250	1.000	1.000	0.142	—	—
TZ	実験1_DP-13-Q_滑り	—	-		_	_	_	-	_
RY		_	-		_	_	_	-	_
TX		—	-		_	_	_	-	_
ΤZ	実験1_DP-12-T_滑り	4.675	0.004	0.200	1.100	1.000	0.000	-	_
RY			—		_	_	_	—	_
TX		1.000	1.000	0.000	_	_	—	-	0.50
TZ	SLIP-X	_	_		_	_	_	-	_
RY		—	_		_	_	_	—	
TX		—	-		_	_	_	-	_
TZ	SLIP-Z	1.000	1.000	0.000	_	—	—	-	0.50
RY		_	-		_	—	—	-	—

単軸バネモデル:WS4 単軸バネモデル:EMO

単軸バネモデル:BL2

図3.2.25 復元力特性モデル

エ) 解析結果(荷重変形角関係)

図3.2.26及び図3.2.27にSNAPの計算値と実験値の荷重変形角関係を示す。また、図 3.2.28にループごとの計算値と実験値の荷重変形角関係を示す。

図3.2.26 荷重変形角関係

図3.2.27 荷重変形角関係(第1象限)

図3.2.28 ループごとの荷重変形角関係

オ)解析結果(ヒンジ図・応力図)

図 3.2.29 にヒンジ図(塑性率図)を、図 3.2.30 に応力図を示す。図は、静的増分解析 の最終ループの最大変位時のものである。なお、鉄骨の場合は、ヒンジ図△のマークは せん断降伏、○は曲げ降伏、◇はスプリングの並進方向(TX・TY・TZ)の降伏を示してい る。なお、梁に黄色のマークがあるが、復元力特性の設定上 Fc=0 としているため、黄色 の○・△のマークが発生しているが、ソフト上の表現であり、これらは、降伏していな い。図 3.2.30 より、鋼材の塑性化部が降伏しその後、ドリフトピンのせん断接合部が降 伏していることがわかる。

図3.2.29 ヒンジ図 (塑性率図)

図3.2.30 応力図

4) 実験 1-3 (試験体呼称:引きボルト)

ア)モデル図

図 3.2.31 にモデル図を示す。鉄骨の柱・梁(フレーム)の接合条件・仕様等は実験 1-1 と同様とした。

CLTの壁と鉄骨梁の接合部分は、引きボルトを表現したスプリング1と、木材の支圧 を表現したスプリング4と、ドリフトピン自体の挙動を表現したスプリング2と、鋼板先 孔のクリアランスによる初期すべりを考慮するため、すべりを表現したスプリング3か ら成る。スプリング1と、スプリング2・3を直列につないだものと、スプリング4を 並列につないでいる。

イ)部材断面及びスプリング

表3.2.17に部材断面リスト及びスプリングのリストを示す。鋼材、CLTのヤング係数及 びせん断弾性係数は実験1-1と同様とした。また、スプリングについて、引きボルトと木 材の支圧をスプリング1・4の剛性は、表3.2.7の剛性を用いている。

スプリング2は表3.2.6のドリフトピン1本の剛性にそれぞれ13本を乗じて算出した。ス プリング3は、滑り部分で直列にバネを足し合わせた時に、滑りの部分の変形が卓越す るように、任意のなるべく大きな値を入れている。

表3.2.17 部材断面及びスプリング

はり

木部材断面リスト

++		
•+		

名称	実験1CLT
端部	両端
断面	
Dz×Dy (mm)	2000x210
強軸方向	z方向
強軸方向の向き	左向き
材質	木
使用環境	Ⅲ(通常)

スフ゜リンク゛リスト

-	剛性(kN/r	mm, kN. m/	(rad)	座標系			
留亏	TX	TZ	RY	種別	局部座標		
1	0.00	239.00	0.00	基準座標系	-		
2	790.40	0.00	0.00	基準座標系	_		
3	20000.00	0.00	0.00	基準座標系	_		
4	0.00	960.00	0.00	基準座標系	-		

ウ)弾塑性モデルの設定

表3.2.18に鉄骨の梁・柱(フレーム)の弾塑性モデルの設定、表3.2.19に単軸バネモデルの設定値について示す。また、図3.2.32に復元力特性の概要図を示す。

梁・柱については、実験1-1と同様の設定とした。ただし、中央の梁に関しては、実験 1-1・1-2とスチフナの位置が異なるため、座屈低減の値を変更し、曲げ降伏モーメント の値を変更している。

表3.2.20にスプリングの単軸バネモデルの設定値について示す。また、図3.2.33に復元 力特性の概要図を示す。

引きボルト部分は、復元力特性をSL2とし、引張のみ耐力をもつものとし、木材の支圧 部分は、復元力特性をSL2とし、圧縮のみ耐力をもつものとした。引きボルト及び木材の 支圧部分の骨格曲線部分は、表3.2.7記載の値とした。

ドリフトピン部分と滑り部分の設定は、実験1-1と同様の設定とした。

復元力特性モデルの詳細については、SNAP Ver8テクニカルマニュアルに記載している。

			曲 げ			せ	ん fr		軸
	名称	構造	モデル	復元力	降伏応力度(N/m m²)	モデル	復元力	降伏応力度 (N/m m²)	
	実験1_梁左右	S	単軸バネ	R03	405※	単軸バ ネ	R03	477/√3	-
梁	実験1_3_梁中央	S	単軸バネ	R03	405※	単軸バ ネ	R03	477/√3	-
柱	実験1	S	MSモデル	鉄骨/鉄 筋 SS3	フランジ:295 ウェブ:334	単軸バ ネ	BL2	295/√3	弾性

表3.2.18 フレームの弾塑性モデルの設定

※単軸バネモデルの降伏モーメントは、座屈を考慮し、この値に断面係 数を乗じた値に座屈低減をしている

表3.2.19 フレームの単軸バネモデルの設定

(※表中"名称"は、図3.2.31モデル図中の緑色文字:単軸バネモデル名称と対応)

単軸バネモデルーはり

	夕社	括印		正側(kl	N, kN. m)		負側(kN,kN.m)			
	有你	作里 万川	Fc	Fy	α	β	Fc'	Fy'	α΄	β'
Myi		修正Ramberg-Osgood型(RO3)	0.00	521.81	1.000	0.005	0.00	521.81	1.000	0.005
Муj		修正Ramberg-Osgood型(RO3)	0.00	521.81	1.000	0.005	0.00	521.81	1.000	0.005
Qzi	実験1_梁左右	修正Ramberg-Osgood型(RO3)	0.00	823.99	1.000	0.005	0.00	823.99	1.000	0.005
Qzj	Arti Oʻl Dono a	修正Ramberg-Osgood型(RO3)	0.00	823.99	1.000	0.005	0.00	823.99	1.000	0.005
N		弾性(EL1)	-	-	-	-	-	-	-	-
Myi		修正Ramberg-Osgood型(RO3)	0.00	531.63	1.000	0.005	0.00	531.63	1.000	0.005
Myj		修正Ramberg-Osgood型(RO3)	0.00	531.63	1.000	0.005	0.00	531.63	1.000	0.005
Qzi	実験1_3_梁中央	修正Ramberg-Osgood型(RO3)	0.00	531.63	1.000	0.005	0.00	531.63	1.000	0.005
Qzj		修正Ramberg-Osgood型(RO3)	0.00	531.63	1.000	0.005	0.00	531.63	1.000	0.005
N		弾性(EL1)	_	_	_	_	_	_	_	-

	反升			ŧŦ	<i>ا</i> لار ا	ラメータ	l.		
	石が	p1	p2	p3	p4	p5	p6	p7	d(mm, rad)
Myi		0.000	11.000	0.000	-	-	-	-	-
Myj	実験1_梁左右	0.000	11.000	0.000	-	-	-	-	_
Qzi		0.000	11.000	0.000	-	-	-	-	-
Qzj		0.000	11.000	0.000	-	-	-	-	_
Ν		-	-	-	-	-	-		-
Myi		0.000	11.000	0.000	-	-	-	-	_
Myj		0.000	11.000	0.000	-	-	-	-	-
Qzi	実験1_3_梁中央	0.000	11.000	0.000	-	-	-	-	_
Qzj		0.000	11.000	0.000	-	-	-	-	-
Ν		_	-	-	-	-	-	-	_

単軸バネモデルー柱

	夕升 廷则			正側(kN,kN.m)			負側(kN,kN.m)			モデ゛ルハ゜ラメータ								
	石朴	1 11 11 11 11 11 11 11 11 11 11 11 11 1	Fc	Fy	α	β	Fc'	Fy'	α'	β'	p1	p2	р3	p4	p5	p6	p7	d(mm, rad)
Myi		弾性(EL1)	-	-	-	_			-	-	-	-	Ĺ	_	-	l	-	_
Myj		弾性(EL1)	-	-	-	-	—	—	-	-	—	-	-	-	-	-	-	-
Qzi	実験1	剛性低減型A(BL2)	-	794.82	-	0.005	—	794.82	—	0.005	0.000	-	-	-	-	-	-	-
Qzj		剛性低減型A(BL2)	-	794.82	-	0.005	-	794.82	—	0.005	0.000	-	I	-	-	I	-	-
N		弾性(EL1)	-	_	-	_	-	_	-			-	-	-	-	-	-	-

単軸バネモデル:R03 MSモデル:SS3

単軸バネモデル:BL2

図3.2.32 復元力特性モデル

表3.2.20 スプリングの単軸バネモデルの設定

(※表中"名称"は、図3.2.32モデル図中の緑色文字:単軸バネモデル名称と対応) 単軸バネモデルースプリング

	夕称	番別	ī	E側(kN,	kN.m)		負側(kN,kN.m)			
	白竹	1 11 11 11 11 11 11 11 11 11 11 11 11 1	Fc	Fy	α	β	Fc'	Fy'	α΄	β'
TX		弾性(EL1)	—	—	Ι	_	—	_	-	—
TZ	実験1_ボルト−T	バイリニアスリップ型(SL2)	_	1.00	_	0.000	-	347.00	_	0.001
RY		弾性(EL1)	-	—	-	_	-	_	—	-
TX		弾性(EL1)	_		_		-	_	_	_
TZ	実験1_支圧-C	バイリニアスリップ型(SL2)	-	984.00	-	0.001	-	1.00	-	0.001
RY]	弾性(EL1)	_	-	_	_	-	_	_	_
TX		木造用強度低下4折線モデル(WS4)	434.72	681.46	0.142	0. 020	-	—	—	-
TZ	実験1_DP-13-Q_滑り	弾性(EL1)	_	_	_	_	_	_	_	_
RY		弹性(EL1)	-	-	—	—	—	-	—	_
			-		(Mm)			名/叫/1/	L L N m	
	名称	種別	1	上1 則(KIN,	KN. III)			貝训 (KI	N, KIN. III)	
	113	12/11	Fc	Fy	α	β	Fc'	Fy'	α΄	β΄
TX		弹性(EL1)	-	-	_	_	_	_	-	_
TZ	SLIP-Z	マルチリニア弾性型(EMO)	1000.00	0.00	1.000	1.000	0.00	0.00	1.000	1.000
RY		弾性(EL1)	-		_	-	-	_	-	-

	夕社		モデ゛ルハ゜ラメータ									
	白你	p1	p2	p3	p4	p5	p6	p7	d(mm,rad)			
TX		_	—	—	_	-	_	—	_			
TZ	実験1_ボルト-T	0.000	_	0.500	_	1	0.000	0.000	-			
RY		—	—	—	-	—	_	—	-			
TX		-	_	—	_	_	_	_	-			
TZ	実験1_支圧-C	0.000	—	0.800	_	—	0.000	0.000	-			
RY		_	_	—	_	_	_	—	-			
TX		5.674	0.008	0. 250	1.000	1.000	0.142	_	-			
TZ	実験1_DP-13-Q_滑り	-	_	_	_	—	-	_	-			
RY		_	_	_	_	_	_	_	-			
TX		—	—	—	_	_	_	—	-			
TZ	SLIP-Z	1.000	1.000	0.000	_	-	_	_	0.50			
RY		-	-	-	—	-	—	—	—			

単軸バネモデル:WS4 単軸バネモデル:EM0 単軸バネモデル:SL2 図3.2.33 復元力特性モデル

工)解析結果(荷重変形角関係)

図3.2.34及び図3.2.35にSNAPの計算値と実験値の荷重変形角関係を示す。また、図3.2.36 にループごとの計算値と実験値の荷重変形角関係を示す。

図3.2.34 荷重変形角関係

図3.2.35 荷重変形角関係(第1象限)

図3.2.36 ループごとの荷重変形角関係

オ)解析結果(ヒンジ図・応力図)

図3.2.37にヒンジ図(塑性率図)を、図3.2.38に応力図を示す。図は、静的増分解析の 最終ループの最大変位時のものである。なお、鉄骨の場合は、ヒンジ図△のマークはせ ん断降伏、○は曲げ降伏、◆はスプリングの並進方向(TX・TY・TZ)の降伏を示している。 なお、梁に黄色のマークがあるが、復元力特性の設定上Fc=0としているため、黄色の○・ △のマークが発生しているが、ソフト上の表現であり、これらは、降伏していない。図 3.2.39より、木材の支圧→引きボルト→ドリフトピンのせん断降伏の順番となっている。

図3.2.37 ヒンジ図(塑性率図)

図3.2.38 応力図

5) 実験 2-1 (試験体呼称:曲げ)

ア)モデル図

図3.2.39にモデル図を示す。梁・柱間は剛接合とし、剛域は設定していない。CLTの壁 と鉄骨梁の接合であるドリフトピン接合部分は、ドリフトピン自体の挙動を表現したス プリング1・2と、鋼板先孔のクリアランスによる初期すべりを考慮するため、すべり を表現したスプリング3・4を直列に配置している。この設定は実験1-1と同様である。

図3.2.39 モデル図

イ) 部材断面及びスプリング

表3.2.21に部材断面リスト及びスプリングのリストを示す。鋼材のヤング係数は、 205kN/mm²・せん断弾性係数79kN/mm²とし、公称値を採用した。CLTのヤング係数は 6.1kN/mm²、せん断弾性係数0.81kN/mm²とし表3.2.5記載の値とした。また、スプリング について、スプリング1・2は表3.2.6のドリフトピン1本の剛性にそれぞれ15本・32本を 乗じて算出した。スプリング3・4は、滑り部分で直列にバネを足し合わせた時に、滑り の部分の変形が卓越するように、任意のなるべく大きな値を入れている。

部材断面リスト

- 3	+	11	
		~,	

名称	剛な境界梁	実験2梁-曲げ
形状	箱形	H形強軸
端部	全断面	全断面
断面		
寸法(mm)	200x200x50. 0x50. 0	300x150x9. 0x9. 0 (0. 00)
材質	SN490	SS400

木部材断面リスト

13	
Æ	

名称	実験2CLT
端部	両端
断面	
Dz×Dy (mm)	2000x270
強軸方向	z方向
強軸方向の向き	左向き
材質	木
使用環境	Ⅲ(通常)

来旦	剛性(kN)	/mm, kN. m/r	座標系			
田勺	TX	TZ	RY	種別	局部座標	
1	0.00	807.86	0.00	基準座標系	_	
2	2270.84	0.00	0.00	基準座標系	_	
3	0.00	20000.00	0.00	基準座標系	-	
4	20000.00	0.00	0.00	基準座標系	—	

ウ)弾塑性モデルの設定

表 3.2.22 に鉄骨の梁・柱(フレーム)の弾塑性モデルの設定、表 3.2.23 に単軸バネモ デルの設定値について示す。また、図 3.2.40 に復元力特性の概要図を示す。

梁について、単軸バネモデルとし、復元力特性は曲げ・せん断ともに、RO3モデルとした。梁の降伏モーメントは、表3.2.4に示す材料実験値に断面係数を乗じて算出した。

梁の降伏せん断力は、表3.2.4に示す材料実験値を√3で除した値に、ウェブの断面積を乗 じて算出した。2次剛性比等その他のパラメータは、実験結果を参照して決めた。

柱について、軸、曲げはMSモデルとし、鉄骨の復元力特性はSS3とした。せん断は単軸バネモデルとし、復元力特性はBL2とした。

表3.2.24にスプリングの単軸バネモデルの設定値について示す。また、図3.2.41に復元 力特性の概要図を示す。これらの設定は、実験1-1と同様である。本数に関しては、15本・ 32本を乗じて算出した。復元力特性モデルの詳細については、SNAP Ver8テクニカルマ ニュアルに記載している。

		-							
			E (*	由 げ		せん 断			軸
	名称	構造	モデル	復元力	降伏応力度 (N/m m ²)	モデル	復元力	降伏応力度 (N/m m ²)	
	実験2_曲げ_梁 左右	S	単軸バネ	R03	279	単軸バ ネ	R03	279/√3	-
梁	実験2_曲げ_梁 中央	S	単軸バネ	R03	279	単軸バ ネ	R03	279/√3	-
柱	実験2	S	MSモデル	鉄骨/鉄 筋 SS3	276	単軸バ ネ	BL2	276/√3	弾 性

表3.2.22 フレームの弾塑性モデルの設定

表3.2.23 フレームの単軸バネモデルの設定

(※表中 "名称"は、図3.2.40モデル図中の緑色文字:単軸バネモデル名称と対応) 単軸バネモデルーはり

	夕敌	千舌 兄山	正側(kN,kN.m)				負側(kN, kN. m)			
	白竹	↑里 万リ	Fc	Fy	α	β	Fc'	Fy'	α'	β'
Myi		修正Ramberg-Osgood型(RO3)	0.00	159.53	1.000	0.005	0.00	159. 53	1.000	0.005
Муj		修正Ramberg-Osgood型(RO3)	0.00	159.53	1.000	0.005	0.00	159.53	1.000	0.005
Qzi	実験2_曲げ_梁左右	修正Ramberg-Osgood型(RO3)	0.00	408.82	1.000	0.005	0.00	408.82	1.000	0.005
Qzj		修正Ramberg-Osgood型(RO3)	0.00	408.82	1.000	0.005	0.00	408.82	1.000	0.005
Ν		弹性(EL1)		-	_	-	-	_	_	_
Myi		修正Ramberg-Osgood型(RO3)	0.00	159.53	1.000	0.005	0.00	159.53	1.000	0.005
Муj		修正Ramberg-Osgood型(RO3)	0.00	159.53	1.000	0.005	0.00	159.53	1.000	0.005
Qzi	実験2_曲げ_梁中央	修正Ramberg-Osgood型(RO3)	0.00	408.82	1.000	0.005	0.00	408.82	1.000	0. 005
Qzj		修正Ramberg-Osgood型(RO3)	0.00	408.82	1.000	0.005	0.00	408.82	1.000	0.005
Ν		弾性(EL1)	-	-	_	_	-	-	-	_

	夕敌			ŦŦ	lln° :	ラメータ			
	1 7小	p1	p2	р3	p4	p5	p6	p7	d(mm, rad)
Myi		0.000	11.000	0.000	Ì	-	-	ĺ	_
Муj		0. 000	11.000	0.000	Ĩ	—	-	ľ	—
Qzi	実験2_曲げ_梁左右	0.000	11.000	0.000	Ţ	-	-	I	—
Qzj		0.000	11.000	0.000	Ţ	-	-	Ι	-
Ν		_	Ι	_	Ĩ	—	-	I	—
Myi		0.000	11.000	0.000	I	-	-	I	-
Myj		0.000	11.000	0.000	Ĩ	-	-	ļ	-
Qzi	実験2_曲げ_梁中央	0.000	11.000	0.000	ļ	-	-	I	-
Qzj		0.000	11.000	0.000	Ĩ	-	-	I	-
Ν		_	_	_	I	-	—	l	-

単軸バネモデルー柱

	夕社	3.称		正側(kN,kN.m)			負側(kN,kN.m)			モデ゛ルハ゜ラメータ								
	石仦	竹里刀り	Fc	Fy	α	β	Fc'	Fy'	α	β'	p1	p2	p3	p4	p5	p6	p7	d(mm,rad)
Myi		弾性(EL1)	-	_	-	—	_	—	_	-		-	-	-	-	-	-	—
Myj		弾性(EL1)	-	_	-	_	—	—	—	-	_	-	-	-	-	-	-	—
Qzi	実験2	剛性低減型A(BL2)	-	810.77	-	0.005	—	810.77	—	0.005	0.000	-		-	-	-	-	—
Qzj		剛性低減型A(BL2)	-	810.77	-	0.005	_	810.77	_	0.005	0.000	-	-	-	-	_	-	-
N		弾性(EL1)	-	_	-	_	_	—	—	_		-	—	-	—	ļ	-	-

単軸バネモデル:RO3 MSモデル:SS3 単軸バネモデル:BL2 図3.2.40 復元力特性モデル

表3.2.24 スプリングの単軸バネモデルの設定

(※表中"名称"は、図3.2.41モデル図中の緑色文字:単軸バネモデル名称と対応) 単軸バネモデルースプリング

	夕称	千重 兄川		正側(kN, k	(N. m)			負側(k	KN, kN. m)
	白竹	作里力リ	Fc	Fy	α	β	Fc'	Fy'	α΄	β'
TX		弹性(EL1)	-	Ι	-	—	Ι	-	—	-
TZ	実験2_DP-T_滑り	木造用強度低下4折線モデル(WS4)	565.50	1002.60	0.311	0.014	1	-	—	-
RY		弹性(EL1)	—	-	-	-	-	-	—	-
TX		木造用強度低下4折線モデル(WS4)	1884.80	2578.24	0.144	0.003	-		—	-
TZ	実験2_DP-Q_滑り	弹性(EL1)	—	Ι	-	—	Ι	—	_	—
RY		弹性(EL1)	_	-	-	_	-	-	_	-
TX		マルチリニア弾性型(EMO)	1000.00	0.00	1.000	1.000	0.00	0.00	1.000	1.000
TZ	SLIP-X	弹性(EL1)	_	-	-	~ -1	Ι		—	—
RY		弹性(EL1)	—	—	—	—	_	-	—	-
TX		弾性(EL1)	-	-	-	-	-	-	-	-
TZ	SLIP-Z	マルチリニア弾性型(EMO)	1000.00	0.00	1.000	1.000	0.00	0.00	1.000	1.000
RY		弾性(EL1)	-	-	-	-	-	-	-	-

	夕社				モデ゛ルノ	ヽ゚ラメータ			
	白怀	p1	p2	p3	p4	p5	p6	p7	d(mm, rad)
TX		_	_		_	-		-	_
TZ	実験2_DP-T_滑り	4.412	0.013	0.250	1.000	1.000	0.311	—	-
RY		—	-	—	—	_	_	-	-
TX		5.925	0.002	0.250	1.000	1.000	0.144	-	_
TZ	実験2_DP-Q_滑り	—	_		-	_	-	-	_
RY		-	_	-	_	-	_	-	-
TX		1.000	1.000	0.000	—	_	—	—	0.50
TZ	SLIP-X	—	—	—	—	_	_	-	-
RY		—	-		—	_		-	-
TX		—	_		_	_		-	_
TZ	SLIP-Z	1.000	1.000	0.000	—	—	—	—	0.50
RY		—	—		-	-	—	—	-

図3.2.41 復元力特性モデル

エ) 解析結果(荷重変形角関係)

図3.2.42及び図3.2.43にSNAPの計算値と実験値の荷重変形角関係を示す。また、図3.2.44 にループごとの計算値と実験値の荷重変形角関係を示す。

図3.2.42 荷重変形角関係

図3.2.44 ループごとの荷重変形角関係

オ)解析結果(ヒンジ図・応力図)

図3.2.45にヒンジ図(塑性率図)を、図3.2.46に応力図を示す。図は、静的増分解析の 最終ステップ時のものである。なお、鉄骨の場合は、ヒンジ図△のマークはせん断降伏、 ○は曲げ降伏、◇はスプリングの並進方向(TX・TY・TZ)の降伏を示している。図3.2.46 より、梁の端部で曲げ降伏しており、その後フレーム下部の短柱でせん断降伏している。

図3.2.46 応力図

6) 実験 2-2 (試験体呼称:せん断)

ア)モデル図

図3.2.47にモデル図を示す。寸法・接合条件・スプリングの配置等は、実験2-1と同様 で梁の断面寸法のみ異なる。

イ)部材断面及びスプリング

表3.2.25に部材断面リスト及びスプリングのリストを示す。鋼材のヤング係数、スプリングの設定等は、実験2-1と同様で梁の断面寸法のみ異なる。

表3.2.25 部材断面及びスプリング

部材断面リスト

名称	剛な境界梁	実験2梁-せん断
形状	箱形	H形強軸
端部	全断面	全断面
断面		
寸法(mm)	200x200x50. 0x50. 0	300x150x6. 0x25. 0 (0. 00)
材質	SN490	SS400

柱

名称	実験2柱
形状	H形強軸
端部	両端
断面	
寸法(mm)	350x250x16.0x16.0
鉄骨	SS400

木部材断面リスト

柱

名称	実験2CLT
端部	両端
断面	
Dz×Dy (mm)	2000x270
強軸方向	z方向
強軸方向の向き	左向き
材質	木
使用環境	Ⅲ(通常)

スプリングリスト

-	剛性(kN)	/mm, kN. m/r	座標系				
留亏	TX	TZ	RY	種別	局部座標		
1	0.00	807.86	0.00	基準座標系	-		
2	2270.84	0.00	0.00	基準座標系	—		
3	0.00	20000.00	0.00	基準座標系	-		
4	20000.00	0.00	0.00	基準座標系	-		

ウ)弾塑性モデルの設定

表3.2.26に鉄骨の梁・柱(フレーム)の弾塑性モデルの設定、表3.2.27に単軸バネモデルの設定値について示す。また、図3.2.49に復元力特性の概要図を示す。

梁について、単軸バネモデルとし、復元力特性は曲げ・せん断ともに、RO3モデルとした。梁の降伏モーメントは、表3.2.3に示すフランジ(25mmSS400)の材料実験値に断面係数を乗じた値とした。

梁の降伏せん断力は、表3.2.3に示すウェブ(6mmSS400)の材料実験値(358kN/mm²)を√3 で除した値に、ウェブの断面積を乗じて算出した。また、ウェブ材の局部座屈について、 図3.2.48に示す式より、k=5.34にて算出し、適用外であったため考慮していない。2次剛 性比等その他のパラメータは、実験結果を参照して決めた。

表3.2.28にスプリングの単軸バネモデルの設定値について示す。また、図3.2.50に復元 力特性の概要図を示す。柱・スプリングの設定については、実験2-1と同様である。

復元力特性モデルの詳細については、SNAP Ver8テクニカルマニュアルに記載している。

図3.2.48 局部座屈

			E (*	由 プ		せん 断			軸
	名称	構造	モデル	復元力	降伏応力度(N/m m²)	モデル	復元力	降伏応力度(N/mm²)	
梁	実験2_せん断	S	単軸バネ	R03	263※	単軸バ ネ	R03	358/√3	-
柱	実験2	S	MSモデル	鉄骨/鉄 筋 SS3	276	単軸バ ネ	BL2	276/√3	弾性

※フランジの材料実験値

表3.2.27 フレームの単軸バネモデルの設定

(※表中"名称"は、図3.2.49モデル図中の緑色文字:単軸バネモデル名称と対応) 単軸バネモデルーはり

	夕玫	行手 兄山		正側(kl	N, kN. m)	負側(kN, kN. m)				
	有办	↑里 万川	Fc	Fy	α	β	Fc'	Fy'	α'	β'
Myi		修正Ramberg-Osgood型(RO3)	0.00	295.88	1.000	0.005	0.00	295.88	1.000	0. 005
Муj		修正Ramberg-Osgood型(RO3)	0.00	295.88	1.000	0.005	0.00	295.88	1.000	0.005
Qzi	実験2_せん断	修正Ramberg-Osgood型(RO3)	0.00	310.04	1.000	0.005	0.00	310.04	1.000	0.005
Qzj		修正Ramberg-Osgood型(RO3)		310.04	1.000	0.005	0.00	310.04	1.000	0.005
N		弾性(EL1)		—	-	_	_	—	_	_

	夕五	モデ゛ルハ゜ラメータ									
	白你	p1	p2	p3	p4	p5	p6	p7	d(mm, rad)		
Myi	-	0.000	11.000	0.000	-	-	—	-	—		
Myj		0.000	11.000	0.000	-	—	—	-	_		
Qzi	実験2_せん断	0.000	11.000	0.000		—	—	-	_		
Qzj		0.000	11.000	0.000	-	—	—	—	—		
Ν			_		-	-	-	-	_		

単軸バネモデルー柱

	夕珩	種別	正側(kN,kN.m)			負側(kN,kN.m)				モデ゛ルハ゜ラメータ								
	10 1小		Fc	Fy	α	β	Fc'	Fy'	α΄	β'	p1	p2	p3	p4	p5	p6	p7	d(mm, rad)
Myi		弾性(EL1)	-	_	-	_	-	_	-	_	_	-	I	-	-	-	-	_
Myj		弾性(EL1)	-	-	-	-	-	-	-	_	_	-	-	—	-	-	-	-
Qzi	実験2	剛性低減型A(BL2)	-	810. 77	-	0.005	—	810.77	—	0.005	0.000	-	Ī	-	-	-	I	-
Qzj		剛性低減型A(BL2)	-	810.77	-	0.005	—	810.77	-	0.005	0.000	-	I	-	-	-	J	_
N		弹性(EL1)	-	_	-	_	_	_	-	_	_	-	-	-	-	-	-	_

単軸バネモデル:R03

MSモデル:SS3 図3.2.49 復元力特性モデル

単軸バネモデル:BL2

表3.2.28 スプリングの単軸バネモデルの設定

(※表中 "名称"は、図3.2.50モデル図中の緑色文字:単軸バネモデル名称と対応) 単軸バネモデルースプリング

夕玫		千舌 只 山		正側(kN,I	(N. m)	負側(kN,kN.m)				
	口小	「生力」	Fc	Fy	α	β	Fc'	Fy'	α΄	β'
TX		弾性(EL1)	_	_	_	_	-	-	-	-
TZ	実験2_DP-T_滑り	木造用強度低下4折線モデル(WS4)	565.50	1002.60	0.311	0.014	-	-	_	-
RY		弾性(EL1)	-	-	-	—	-	-	—	-
TX		木造用強度低下4折線モデル(WS4)	1884.80	2578.24	0.144	0.003	-	-	_	-
TZ	実験2_DP-Q_滑り	弾性(EL1)	_	_	_	_	-	-	_	-
RY		弾性(EL1)	-	_	_		-	-	-	-
TX		マルチリニア弾性型(EMO)	1000.00	0.00	1.000	1.000	0.00	0.00	1.000	1.000
TZ	SLIP-X	弾性(EL1)		_	-	_	-	_	_	-
RY		弾性(EL1)	-	_	_	_	-	-	_	—
TX		弾性(EL1)	_	_	_		-	-	_	—
TZ	SLIP-Z	マルチリニア弾性型(EMO)	1000.00	1000.00 0.00		1.000	0.00	0.00	1.000	1.000
RY		弾性(EL1)			—	—	-	—	_	-

	夕玫	モデ゛ルハ゜ラメータ									
	口小	p1	p2	p3	p4	p5	p6	p7	d(mm, rad)		
TX		-	_	_	-	_	_	-	_		
TZ	実験2_DP-T_滑り	4.412	0.013	0.250	1.000	1.000	0.311	-	-		
RY		-			-	—	—	-	-		

	夕玫		モテ゛ルハ゜ラメータ										
	白小	p1	p1 p2 p3		p4	p5	p6	p7	d(mm, rad)				
ТΧ		5.925	0.002 0.250		1.000	1.000	0.144	-	_				
TZ	実験2_DP-Q_滑り	_		—	_	-	-	-	_				
RY		—	-	-	_	_	-	-	-				
TX		1.000	1.000	0.000	-	Ι	_	-	0.50				
TZ	SLIP-X	-	-	_	—	-	-	-	-				
RY		_		—	_	_	_	-	_				
TX		_	_	_	_	_	_	-	_				
TZ	SLIP-Z	1.000	1.000	0.000		—	—	-	0.50				
RY		_	-	—	—	_	—	-	_				

エ) 解析結果(荷重変形角関係)

図3.2.51及び図3.2.52にSNAPの計算値と実験値の荷重変形角関係を示す。また、図3.2.53 にループごとの計算値と実験値の荷重変形角関係を示す。

図3.2.51 荷重変形角関係

オ)解析結果(ヒンジ図・応力図)

図3.2.54にヒンジ図(塑性率図)を、図3.2.55に応力図を示す。図は、静的増分解析の 最終ステップ時のものである。なお、鉄骨の場合は、ヒンジ図△のマークはせん断降伏、 ○は曲げ降伏、◇はスプリングの並進方向(TX・TY・TZ)の降伏を示している。図3.2.55 より、梁が曲げ降伏後せん断降伏しており、その後フレーム下部の短柱でせん断降伏し ている。

図3.2.54 ヒンジ図 (塑性率図)

7) フレーム両側下端の短柱の有無の影響

ア)モデル図及び計算条件

鉄骨の柱・梁(フレーム)について、フレーム両側下端の短柱は無いものとして、解 析を行った結果を以下に示す。固定条件は、図3.2.56に示すように、両側下端をピン接 合としている。短柱部分を無くしたことと、固定条件以外は、前ページに示した、各 実験の条件から変更していない。

図3.2.56 モデル図

イ) 実験1解析結果(荷重変形角関係)

図3.2.57~図3.2.59に実験1のSNAPの計算値(短柱あり)、計算値(短柱なし)、実験値の 荷重変形角関係を示す。実験1は短柱の有無の影響が少ないため、ヒンジ図及び応力図 については省略する。

図3.2.57 荷重変形角関係(実験1-1)

図3.2.58 荷重変形角関係(実験1-2)

図3.2.59 荷重変形角関係(実験1-3)

ウ)実験2解析結果(荷重変形角関係)

図 3.2.60~図 3.2.63 に実験1の SNAP の計算値(短柱あり)、計算値(短柱なし)、実験値の荷重変形角関係を示す。

図3.2.60 荷重変形角関係(実験2-1)

図3.2.62 荷重変形角関係(実験2-2)

図3.2.63 荷重変形角関係(第1象限)(実験2-2)

エ)実験2解析結果(ヒンジ図・応力図)

図3.2.64及び図3.2.65にヒンジ図(塑性率図)を、図3.2.66及び図3.2.67に応力図を示す。 図3.2.65より、実験2-1では、梁が曲げ降伏している。図3.2.67より、実験2-2では、梁が 曲げ降伏後せん断降伏している。 2014年[127] 第43777〕

図3.2.64 ヒンジ図(塑性率図)(実験2-1)

図3.2.65 応力図(実験2-1)

図 3.2.67 応力図(実験 2-2)

(2) Ds 値の設定方針(案)

CLT 壁を有する鉄骨造の保有水平耐力計算を行う際に必要となる Ds 値の設定方針の案を示す。 まず、本総プロの実験で扱った主な崩壊形として、[a] S 部材降伏、[b] S-CLT 接合部降伏、の2 種類 に大きく分類する(図 3.2.68)。

CLT 壁に関しては筋かいの種別及び部材群の考え方を適用することで、通常の鉄骨造の Ds 値(昭和55年建設省告示第1792号第3)から選択することを考える。図3.2.69に告示の適用方法(案)を示す。 左側に筋かい、右側に柱梁に関する事項を示している。

まず左上の「筋かいの種別」では、[a]S 降伏の場合に BB、[b]接合部降伏の場合に BC とする。ここで、[a]の場合に復元力特性は柱梁の鉄骨部材の特性が反映されるため柱梁部材のみから Ds 値を決定することも考えられる。また、[b]の場合には履歴特性がスリップ型になる場合が多いので引張り筋かい(細長比が大きい筋かい)に相当するとして BB と考えることもできる。しかし、新しい混構造の構造形式であることや、[a]では相応のせん断力を CLT 壁も負担することから、Ds 値を少し高めに設定することを意図して、[a]で BB、[b]で BC、とした。

次に、「筋かいの部材群の種別」は、BC の負担割合から部材群としての種別は B 又は C となる。こ こで、筋かいの場合に端部接合部の保有耐力接合が求められることに対応させて、[a]では塑性化後の 耐力上昇を考慮しても崩壊形が変わらないことを確認するために、柱梁の全塑性耐力又はメカニズム 時耐力を割り増した応力に対して接合部が降伏しないことを確かめる。[b]ではメカニズム時の接合部 の変形が限界変形以内であることを確認する。

右上の「柱梁の種別」は、通常通り、柱と梁の幅厚比から部材種別を決定する。なお、CLT 壁を入 れる場合、梁が短スパンとなって曲げ降伏よりもせん断降伏が先行する場合も見られるが、鉄骨梁部 材ではせん断降伏先行でも耐力を維持し塑性変形能力を期待できる。そのため、せん断降伏が先行す るか否かに関わらず、種別は単純に幅厚比から判断する。

「柱梁の部材群の種別」は、通常通りの判定となる。また、柱梁接合部の保有耐力接合や梁の保有耐力横補剛についても通常の鉄骨造と同様である。なお、CLT壁を入れる場合、梁の中間でCLT壁からの応力を受けることになるため、梁に対して十分な横補剛を設けることが必要である。

最終的に CLT 壁(筋かい)の負担割合 βu に応じて、表 3.2.69 に示す表(昭 55 建告第 1792 号第 3 第四号)から Ds を決定する。

図 3.2.69 告示(昭和 55 年建設省告示第 1792 号第 3)の適用方法(案)

		柱及びはりの部材群としての種別				
			А	В	С	D
	A 又は β ₄ =0の場合		0.25	0.3	0.35	0.4
筋かいの部 材群として の種別	В	0<βu≦0.3の場合	0.25	0.3	0.35	0.4
		0.3<βu≦0.7の場合	0.3	0.3	0.35	0.45
		βu >0.7の場合	0.35	0.35	0.4	0.5
	С	0<βu≦0.3の場合	0.3	0.3	0.35	0.4
		0.3<βu≦0.5の場合	0.35	0.35	0.4	0.45
		βu >0.5の場合	0.4	0.4	0.45	0.5
この表において, β _u は,筋かい(耐力壁を含む。)の水平耐力の和を保有水平耐力の数値で除した数値を						
表すものとする	表すものとする。					

表 3.2.29 鉄骨造の Ds 値(昭 55 建告第 1792 号第 3 第四号)

(3) 構造解析モデルを用いた時刻歴応答解析

参考資料で示す試設計を対象として時刻歴応答解析を行い、CLT 耐力壁を有する混構造の地震時の最大 層間変形角を比較用の純鉄骨造と比較する。

用途と階数は、事務所・5 階建て、集合住宅・6 階建ての2 種類であり、それぞれ CLT 耐力壁を有 する試設計建物と比較用の純鉄骨造のものがあり、計4棟の建物を対象とする。図 3.2.70~3.2.73 に 4 棟の全体図を示す。

〔固有周期 1次:T1=0.942s(桁行方向)、2次:T2=0.896s(張間方向)〕図 3. 2. 70 事務所、5 階建て、比較用鉄骨造

[固有周期 1次:T1=0.771s(桁行方向)、2次:T2=0.753s(張問方向)]
 図 3. 2. 72 事務所、5 階建て、CLT 耐力壁付き

図 3.2.73 集合住宅、6 階建て、CLT 耐力壁付き

入力地震動は水平1軸とし、対象建物の桁行方向(X方向)又は張間方向(Y方向)に入力する。 地震波は、位相を JMA KOBE NS 波に設定した模擬地震動1波とする。時刻歴波形及び応答スペクトル(減衰定数 *h*=0.02)を図 3.2.74 に示す。

応答解析の解析時間は 40(秒)とし、減衰定数は、瞬間剛性比例型として減衰定数を 2%とした。P-ム効果については、考慮していない。

図 3.2.75 に最大層間変形角を示す。凡例の"S"は比較用鉄骨造、"CLT+S"はCLT 耐力壁付きを示し、"X" と"Y"はそれぞれ桁行方向と張間方向に入力した結果である。

図 3.2.75 (a)に示す事務所では、2 階で 0.02(=1/50)前後の大きめの応答となっている。桁行・張間 ともラーメン構造の比較用鉄骨造に比べて、CLT 耐力壁付きの方が変形は抑えられている。

図 3.2.75 (b)に示す集合住宅では、比較用鉄骨造の桁行方向(S,X)はラーメン架構であり、事務所 と同様に 0.02 (=1/50)程度の変形が生じている。一方、比較用鉄骨造の張間方向(S,Y)はブレース 付きで、最大でも 2 階の 0.0067 (≒1/150)である。桁行、張間の両方向に CLT 耐力壁を有する建物 では、最大応答は 0.01(=1/100)程度であり、鉄骨造のラーメン構造とブレース構造との間にある。

以上の結果から、Dsの設定方針(案)で示した考え方に基づいて試設計された CLT 耐力壁付き混構造建築物の地震時の層間変形は、比較用の純鉄骨造と概ね同等の値になることが確かめられた。なお、鉄骨造の筋かい付き架構に比べると CLT 耐力壁付き架構の方が変形は大きくなることに留意する。

4. プロトタイプⅢ関連の構造設計に関する技術資料

4.1 CLT 柱-集成材合わせ梁モーメント抵抗接合部の設計方法に関する技術資料

4.1.1 はじめに

CLT 壁勝ち工法の一つに集成材合わせ梁を用いたモーメント抵抗接合部を用いる方法がある。この 接合方法を用いた CLT 壁勝ち工法は、壁脚接合部に加えて、壁梁接合部のモーメント抵抗接合により、 建物により高い耐震性能を付与することができる。そこで、本資料では CLT 壁勝ち工法に集成材合わ せ梁を用いたモーメント抵抗接合部の設計方法を以下に示す。

4.1.2 柱梁接合部の荷重変形関係の設定

(1) 仕様

一例として表 4.1.1 および図 4.1.1 に示す仕様について設計方法を示す。

部位	仕様	樹種・材料	寸法(mm)
CLT 壁パネル	S60-3-3(t=90mm)	スギ	90×1,000
合せ梁	E120-F330 対称異等級構成集成材	オウシュウアカマツ	2 - 90×500
接合具	2面せん断ビス接合	32-PS8×260	—
せん断キー受け	鋼板添え板1面 せん断ビス接合	2-40-TBA65	—
せん断キーピン	丸鋼	SS400	φ40

表 4.1.1 接合部仕様の例

図 4.1.1 接合部仕様の例

(2) モーメント抵抗接合の荷重変形関係の設定方法

各特性値の算出方法

a 初期剛性

初期剛性は下式のように算出される。

$$K_{\theta} = k \cdot \sum r_i^2$$
 (4.1.1) $r_i = \sqrt{x_i^2 + y_i^2}$ (4.1.1A)

ここで、*K*_θ:初期剛性、*k*:単位接合部の初期剛性、*r_i*:i番接合具の接合具配列図図芯からの 距離、(*x_i*+*y_i*):i番接合具の位置座標(接合具配列図心を原点)

b 降伏耐力

最初の1本が降伏変位 δ_p (単位接合部の終局耐力到達時変位)に到達する次点として、下式のように 算出される。

$$M_y = K_\theta \cdot \theta_y \tag{4.1.2} \qquad \theta_y = \frac{\delta_p}{\max[\cdots, r_i, \cdots]} \tag{4.1.2A}$$

ここで、*M_y*:降伏耐力、*K_θ*:初期剛性、*θ_y*:降伏回転角、*δ_p*:単位接合部の降伏変位(完全弾塑性近 似評価における終局耐力到達時変位)、*r_i*:i番接合具の接合具配列図の図芯からの距離

c 終局耐力

全ての接合具が降伏耐力 P_u(単位接合具の終局耐力)に到達する次点として、下式のように算 出される。

 $M_u = P_u \cdot \sum r_i \tag{4.1.3}$

ここで、M_u:終局耐力、p_u:単位接合部の降伏耐力(完全弾塑性近似評価における終局耐力)、r_i:i 番接合具の接合具配列図の図芯からの距離

d 終局変形角

最初の1本が終局変位 μδp に到達する時点として、下式のように算出される。

$$\theta_u = \mu \cdot \theta_y \tag{4.1.4}$$

ここで、 θ_u :終局耐力、単位接合部の塑性率(完全弾塑性近似評価における塑性率)、 θ_v :降伏回転角

e 靭性を確保できるかどうかの確認

柱フェイス位置での終局耐力が寸法効果係数を考慮した曲げ耐力を下回っているかを確認する下 式で算出される。

 $\beta \cdot M_{uu} \le Z_e \cdot K_Z \cdot F_b \tag{4.1.5}$

ここで、 β :柱フェイス位置への換算スパン比(2/2.5=0.8) M_{uu} :終局耐力(上限強度)、 Z_e :正味断 面係数、 K_z : 寸法効果係数(=0.93)、 F_b :曲げの基準強度

② 各特性値の算出結果

図 4.1.1 に示した接合部仕様について、表 4.1.2 に、前項で示した算出方法により求めた接合部の曲 げ特性値一覧を示す。なお、表中の(*1)は参考文献1の実験値を用いた。

項目	項目		記号	単位	値	備考
	単位接合部初期剛性		k	kN/mm	2.19	実験値*1
		下限值	δ_{pL}	mm	8.33	p_{uL}/k
	甲位接合部	平均值	$\delta_{\rm pm}$	mm	9.13	実験値*1
	阵 1入炙1公	上限值	δ_{pu}	mm	9.93	puu /k
単位	単位接合部 降伏耐力	下限值	p_{uL}	kN	18.24	pu _m ×0.8355
接合部		平均值	pum	kN	19.99	実験値*1
特性值		上限值	p _{uu}	kN	21.75	pu _m ×1.1645
	塑性率		μ	-	2.14	実験値*1
			Σr^2	mm ²	5,181,200	
			Σr	mm	12,641	
			max(ri)	mm	492.4	
	柱フェイス位置への換算スパン比		β		0.8	
朝性 確保 の確認	正味断面係数		Ze	mm ³	7,500,000	
	寸法効果係数		Kz		0.93	
	梁材の曲げ基準強度		Fь	N/mm ²	33	
			Ze•Kz•Fb	kNm	230.175	
			β•Muu	kNm	219.9	
	靭性確保の判定		$Z_e \cdot K_z \cdot F_b > \beta \cdot M_{uu}$		OK	
	接合部初期剛性		$\mathbf{K}_{\mathbf{ heta}}$	kNm/rad	11347	
		下限値	θ_{yL}	rad	0.017	
	降伏回転角	平均值	θ_{ym}	rad	0.019	
		上限値	θ_{yu}	rad	0.020	
		下限値	MyL	kNm	191.9	
	降伏モーメント	平均值	Mym	kNm	210.3	
接合部 設計値 [—]		上限值	Myu	kNm	228.8	
		下限値	M _{uL}	kNm	230.6	
	終局モーメント	平均值	Mum	kNm	252.7	
		上限值	Muu	kNm	274.9	
		下限值	θ_{uL}	rad	0.036	
	終局回転角	平均值	θ_{um}	rad	0.040	
		上限值	θսս	rad	0.043	

表 4.1.2 接合部の曲げ特性値

参考文献 1:荒木、中島、秋山、CLT 壁-集成材合わせ梁モーメント抵抗部の曲げ性能に関する実験的

B-293

研究、日本建築学会技術報告集、2021年2月

(3) CLT 壁-集成材合わせ梁の解析モデルの設定方法

図 4.1.2 に、CLT 壁-集成材合わせ梁の解析モデルの設定方法を示す。

2 次元モデルで T 形接合部の場合は、梁端に回転ばねを設け、回転ばねに 2.2 の M-θ 関係を設定する。

+字接合部の場合は、柱の等価線材に柱梁接合部の交点位置(節点①)から少し下に節点を設け(節点②)、節点①-②間に微小な剛はり要素を設け、節点②に回転ばねを設け、回転ばねに 2.2のM-θ関係を設定する。

図 4.1.2 CLT 壁-集成材合わせ梁の解析モデルの設定方法

4.1.3 CLT 柱-集成材合わせ梁モーメント抵抗接合部の設計における留意点

(1)合わせ梁の継手および2材の合わせ方について

継手を設ける場合は、設計者の判断により、継手接合部の応力を適切に伝達できる接合仕様とす る。

また、合わせ梁の2材の間隔を適切に保つために合わせ梁間にスペーサーを配置する場合、直交方 向から取り付く小梁等と干渉しない位置に適当な間隔(1m程度)に配置する。

(2) 直交方向耐震要素の配置方法について

CLT 壁-集成材合わせ梁モーメント抵抗接合を用いた構面と直交する構面は、耐震要素が互いに干渉しないように CLT 壁および梁を配置する。従って、一方向を CLT 柱-集成材合わせ梁モーメント抵抗接合を用いた構面とする場合、直交方向の鉛直構面は、CLT 壁-合わせ梁接合以外の耐震要素となる。配置例を図 4.1.3 に示す。

(1) 直交方向:壁勝ち工法の場合

(2) 直交方向:床勝ち工法の場合

B.構造分野

図 4.1.3 直交方向耐震要素の配置方法の例

(3) CLT 柱-集成材合わせ梁モーメント抵抗接合部のせん断接合の設計方法

① 要求性能

図 4.1.1 に示す仕様について検討する。まず長期分のせん断力を考える。1 層あたりの建築面積 当りの均し重量をやや重めの仕様を想定して 5.5kN/m² と仮定すると、スパン 6m で長期荷重の負 担幅 2.5m とすれば、片側の接合部が負担するせん断力 Q_L は下式の通り求まる。

$$Q_L = 5.5 \text{kN/m} \times 6 \text{m} \times 2.5 \text{m} / 2 \text{ bm} = 42 \text{kN}$$
 (4.1.6)

次に、地震時作用分のせん断力を考える。終局時に両端の接合部が全塑性曲げモーメントに到 達した状態を想定して必要性能を求める。このとき、特性値のバラツキや荷重上昇についても考 慮したものとする。柱心間スパンは、壁幅が 1m、柱の外面間で 6m とすると、6m-1m=5m とな る。また、別資料で示した接合部の全塑性曲げモーメントの上限値は 225kNm である。これよ り、終局時に梁の負担するせん断力 Quは下式の通り求まる。

$$Q_u = 2 \text{ bfr} \times 225 \text{ kNm} / 5 \text{m} = 90 \text{ kN}$$
 (4.1.7)

以上より、終局時に接合部に要求されるせん断耐力は長期分と地震時作用分を合わせて下式の 通り求まる。

 $Q_j = Q_L + Q_u = 42kN + 90kN = 135kN$ (4.1.8)

② 各部に対する検討

下記の項目を検討する。

1) 梁部材のせん断

2) 梁部材の横引張

3) CLT 及び梁部材の鋼板添え板スクリュー接合のせん断

4) 鋼板に対するピンの支圧

5) ピンのせん断

1) 梁部材のせん断

「木質構造設計規準・同解説」((一社)日本建築学会)では、接合部におけるせん断力に抵抗 できる有効範囲として、片側の母材縁から最遠方接合具までの範囲と規定している。そして、設 計用外力をこの有効断面により割ることで計算される平均せん断応力度に対して、せん断応力集 中係数として 1.5 を考慮して、設計用せん断応力度を計算している。

検討対象の接合仕様では、梁せいに対して8割の範囲を有効範囲として確保しているので、上述の方法により求まる設計用せん断応力度は下式の通りである。なお、有効範囲において、欠き こみ等の断面欠損率を8割程度考慮することとする。

τ_j =135kN/ (2 材×幅 90mm×せい 500mm×0.8×0.8) × 応力集中係数 1.5 ≒ 2.35N/mm (4.1.9) 梁部材は樹種がオウシュウアカマツの構造用集成材であり、せん断の基準強度(国告 1024 号)は 3.0N/mm²であり、終局時の検討なのでこれが許容せん断応力度となる。これより、下式の通り設計 用せん断応力度は許容せん断応力度を下回っている。

設計用せん断応力度: 2.35 N/mm² / 3.0 N/mm² = $0.78 \leq 1.0 \Rightarrow O$ K (4.1.10)

2) 梁部材の横引張

「木質構造設計規準・同解説」では、せん断力の作用により母材が横引張による割裂破壊する場合に対して、終局耐力の評価式を示している。計算に要する各変数として、割裂破壊定数 Cr/梁幅1/梁せい h/加力材縁から最も遠い接合具までの距離 he がある。

まず、割裂破壊定数 Cr は、比重によりランク分けされた樹種群に応じた値をとるが、梁部材のオウシュウアカマツの場合、数多くの実験による知見において、比重が 0.50 程度であ J1 ランクに相当し、Cr=12.0N/mm^{1.5}の値をとる。

次に、梁幅1と梁せいhはそれぞれ接合仕様より欠きこみの8割を考慮して、1=90mm×2材×0.8= 144mm、h=500mmの値をとる。

そして、加力材縁から最も遠い接合具までの距離 he は、前の検討において梁せいの 8 割としているため、he=500mm×0.8=400mmの値をとる。

以上より、横引張による割裂破壊の終局耐力 Puwl は下式の通り求まる。

 $P_{uw1} = 2 \times Cr : 12.0 \text{N/mm}^{1.5} \times 1 : 144 \text{mm} \times \{\text{he} : 400 \text{mm} / (1 - \text{he} / \text{h} : 0.8)\}^{-0.5} = 154 \text{kN}$ (4.1.11)

設計用せん断力は135kN であり下式の通り終局耐力を下回っている。

設計用せん断力 (135kN) /終局耐力 (154kN) =0.88≦1.0 ⇒OK (4.1.12)

3) CLT 及び梁部材の鋼板添え板スクリュー接合のせん断

CLT と梁部材のせん断力のやり取りは、せん断キーとなるピンに対して、各部材に対してスクリ ューにより留め付けられた添え板鋼板の支圧によって行われることを想定している。鋼板を留めつけ るスクリューは(株)タナカのホールダウン用のビス TBA-65D とする(ネジ山径:6mm、首下長さ 65mm、ビス頭高さ3.7mm)。せん断特性値に関しては、スギのL50とL80のラミナから作成した同 一等級集成材を用いて繊維平行方向と繊維直交方向のせん断試験を行った結果から評価した知見があ り、荷重方向やラミナ等級に依らず、1本当りのせん断特性値として、剛性は1.79kN/mm、終局耐力 3.06kN(<最大耐力)が設計用として評価されたものがある。ここでは、これを用いて設計する。柱 材はスギ CLT、梁材はオウシュウアカマツ集成材であり、接合部のせん断性能は支圧強度に応じて 決まり、支圧強度は比重に正の相関があり、比重はオウシュウアカマツの方が高く、且つ、CLT に ついては主に抵抗するラミナがL60なので、この試験結果を用いておけば安全側の設計となる。

梁材2本で必要せん断耐力は135kNなので梁片側の1せん断面当りに換算すると、せん断性能は 67.5kNが設計用せん断耐力となる。接合部の仕様において、スクリューの本数は40本であり、複数 本打たれることにより想定される低減として「木質構造設計規準・同解説」で釘に対して与えられて

B-297

いる n=20 以上に与えられている 0.8 を考慮して、終局せん断耐力は 3.06kN×40 本×0.8≒97.9kN で あり、下式の通り設計用せん断耐力を上回っている。

設計用せん断耐力 67.5kN/終局せん断耐力 97.9kN=0.69≦1.0 ⇒OK (4.1.13)

4) 鋼板に対するピンの支圧

ピンおよび添え板鋼板の材質はともに SS400 材であるため、F 値は 235N/mm² である。この接触 部におけるピンの短期許容支圧応力度は 235N/mm²/1.1×1.5=320N/mm² となり、板側の短期許容 支圧応力度は 235N/mm²×1.25×1.5=440N/mm2 となるので、ピン側を検討する。

ピン径は40mmとすると、片側せん断面当りの設計用支圧応力度は、76.5kN/(9mm×40mm) ⇒212N/mm²となる。許容支圧応力度を安全側として短期レベルとすると320N/mm²なので下式の 通り、設計用支圧応力度を上回っている。

設計用支圧応力度 212N/mm²/許容支圧応力度 320N/mm² ≒ 0.67 ≦ 1.0 ⇒ OK (4.1.14)

5) ピンのせん断

ピンの材質は SS400 材であるため、ピンの短期許容せん断応力度は 135N/mm²である。ピンの負 担するせん断力は設計用として 67.5kN であり、せん断応力度係数 4/3 を考慮すると、設計用せん 断応力度は、67.5kN/{(40mm/2)²×3.14}×4/3=71.7N/mm2 となる。

許容せん断応力度を安全側として短期レベルとすると135N/mm²なので、下式の通り設計用せん 断応力度を上回っている。

> 設計用せん断応力度 71.7N/mm²/許容せん断応力度 135N/mm²≒0.53≦1.0⇒OK (4.1.15)

(4) 合せ梁接合部の割裂補強の考え方

① はじめに

CLT 壁勝ち工法の一つである集成材合せ梁を用いたモーメント抵抗接合による柱梁接合部につい て、集成材側の急激な耐力低下を招く割裂破壊を防止することは、終局時の耐力および変形能を確保 するために必要である。このため、縁に近い接合具列の割裂想定線に全ねじスクリューを打ち込み補 強する方法を採用した。本章では、割裂補強ビスの仕様を決定するための検討結果を示す。

② 割裂補強ビスの仕様検討

1) 打込み本数について

割裂は縁距離が小さいほど起りやすいことは既往研究より知られており、図 4.1.4 に示す CLT 壁-梁接合部の集成材梁において割裂が想定されるのは、縁に最も近い繊維平行方向に並ぶ接合具群であ り、この位置を全ねじスクリューを打ち込むことにより割裂補強することとする。

図 4.1.4 想定する CLT 壁-梁接合部

モーメント抵抗用の2面せん断ビス接合(ビス: PS8×260)の設計用せん断特性値を表4.1.3 に示す。 設計用応力は、終局耐力 pu発揮時にその繊維直交方向成分の横引張応力が割裂を生じさせると考えら れ、その応力が最大となるのは図4.1.4 に示すように最も外側の位置であり、合せ梁の集成材1枚あた りが負担する応力は下式で求められる。

 $P_{uwd} = p_u \cdot \cos\theta/2$

 $=16.70 \text{kN} \times (250 \text{mm} + 100 \text{mm} \times 2) / \{(80 \text{mm} \times 2.5)^2 + (250 \text{mm} + 100 \text{mm} \times 2)^2\}^{0.5/2}$ $=16.70 \text{kN} \times 0.914/2 = 7.6 \text{kN}$

(4.1.16)

		k(kN/mm)	p _u (kN)	δ _p (mm)	μ(-)	
PS8-260	下限値	2.10	16.70	7.625	2.14	
	平均値	2.19	19.99	9.18	2.14	
	上限値	-	23.28	-	-	

表4.1.32面せん断ビス接合の設計用せん断特性値

k:初期剛性、pu:終局耐力、δp:終局耐力変形時変位、μ:塑性率

今回用いる仕様の割裂補強ビスに関して、頭部および先端部のそれぞれについて、埋込深さと径 をパラメータとして予備的に行った引抜性能を調べる要素実験では、参考値として 55.0N/mm²(AIJ では 38.1N/mm²)が得られた。この要素試験では、頭部および先端部の性能差はほぼなく、径の細い 方が若干ではあるが同じ埋込深さにおいて高い性能を持つ。

これより、本接合部では、径が最も細い 6mm を用いることし、長さは割裂想定線の縁距離が 50mm のため頭部の埋込深さが 50mm となり、それと同程度を先端部で確保しておけばよいので 110mm の長さとなる PX6-110 を選定した。

設計用耐力として、合せ梁の1枚あたりの集成材梁に対して、割裂補強ビスは1箇所あたり2本 打込んであるので、その引抜性能は、埋込深さ50mmで、オウシュウアカマツの基準比重 r=0.42 を 用いて、下式のように求められる。

Pua=55.0N/mm²×0.421.5×6mm×50mm×2 本=8.98kN

(4.1.17)

以上から、設計用応力と設計用耐力を比較して下記の通り検定比が1を上回ることを確認した。

$$P_{ud}/P_{ua}=7.6$$
kN / 8.98kN=0.846 $\leq 1 \rightarrow OK$

(4.1.18)

なお、本検討では、横引張に対する木材自身の割裂抵抗分を無視しており安全側の検討である ため、下限値同士の比較とした。

また、今回の検討は、割裂想定線に並ぶ接合具群のうち、横引張応力が最大となる最も外側についてのものであり、内側の接合具では応力が小さくなるので、本数を間引くなど仕様の合理化を図る可能性があるが、安全側として全て同じ補強仕様を適用した。

2) 幅打込み位置について

モーメント抵抗用の2面せん断ビス接合(ビス: PS8×260)は、図4.1.5に示すヨーロッパ型降伏 理論より下記の通りモードIVが耐力の最小値となり、降伏モードとなる。

py:単位接合部の降伏せん断耐力(C・Fe・d・l)

C: 接合形式係数(下記の最小値)

C Ia 2.63 = $2\alpha\beta$ C Ib 1.00 = 1 $\left[\left\{ 8\alpha^{2}\beta^{2}(1+\beta) \right\} / (2\beta+1)^{2} + \left\{ 8\beta\gamma(d/l)^{2} \right\} / \left\{ 3(2\beta+1) \right\} \right]^{0.5} - 2\alpha\beta/(2\beta+1)$ $C \operatorname{III}$ 0.88 = $(d/l)[\{8\beta\gamma\}/\{3(1+\beta)\}]^{0.5}$ CIV0.49 = 1: 主材厚 90mm 1: 側材厚 90mm

d:接合具径 8mm

α: 11/1 1.0

- β : Fe'/Fe 1.3
- γ : F/Fe 20.3

F:接合具基準材料強度(AIJ規準を準用して 5.5<doより 490N/mm²とする)

図 4.1.5 2 面せん断接合の降伏モード

モード IV の降伏モードを見ると、合せ梁の集成材のめり込み降伏は、せん断面に近い位置で発生 していることが分かる。このめり込み応力が集成材に対して割裂を誘発する横引張応力となっている ため、割裂補強の位置はこのめり込み応力が発生している位置の近傍に打込む方が有効である。

よって、今回は図 4.1.6 に示すように幅方向のせん断面に近い縁から、縁距離および接合具間隔を 3d(dは割裂補強ビスの径)以上確保した、20mm ピッチで配置した。

4.2 木質工法間混構造の構造計算のための技術資料

4.2.1 目的

2016年に CLT パネル工法の技術基準が制定されたが、許容応力度計算および許容応力度等計算 を行うための規定は床勝ち架構のみ整備されている。

そこで、本技術資料は小幅パネル架構の壁勝ち架構(①垂れ壁 CLT、②集成材合わせ梁併用) を対象として、CLTの構造設計に必要な壁脚部の転倒モーメントの許容値 *M*_{Ta}、構造特性係数 *D*_s、 応力割増し係数 *R*_fを算出することを目的とする。

4.2.2 評価方法

(1) 許容耐力時・終局時の定義

文献 1 を参考に、荷重増分解析による各層の層せん断力-層間変位関係に基づいて Q_a 、 M_{Ta} 、 D_s 、 R_f を算出する。このとき、許容水平耐力時および終局時を次のように定義する。

許容水平耐力時: 下記の1)~3)のいずれかに最も早く到達する解析ステップ。

1)CLT 壁パネル等木質部材が短期許容耐力に達する。

2)いずれかの接合部の応力が短期許容耐力に達する。

3)いずれかの階の層間変形角が 1/150rad に達する。

終局時: 下記の1)~3)のいずれかに最も早く到達する解析ステップ。

1)CLT 壁パネルの面内曲げ応力が下記のMに達する。

$$M=\min(M_{a1}, M_{a2}) \tag{4.2.1}$$

ここで、

$$M_{a1} = \frac{D - 0.85x_n}{2} \cdot C + \frac{D + 2x_n}{6} \cdot T \qquad (4.2.2)$$

$$M_{a2} = \left(1 - \frac{N}{D \cdot t \cdot F_c}\right) \cdot Z \cdot F_b \tag{4.2.3}$$

$$x_n = \frac{N + F_b \cdot t \cdot D/2}{(0.85^2 \cdot F + 1/2 \cdot F_b) \cdot t}$$
(4.2.4)

$$T = F_b \cdot t \cdot (D - x_n)/2$$
(4.2.5)

$$C = 0.85^2 F_c \cdot t \cdot x_n$$
(4.2.6)

- $C = 0.85^2 F_c \cdot t \cdot x_n$ N :壁パネルの軸力
- F_c: 面内圧縮の基準強度
- F_b: 面内曲げの基準強度
- Z:壁パネルの断面係数(全断面有効として)
- t :壁パネルの厚さ
- D:壁パネルの幅

2)CLT パネル以外の木質部材の応力度が基準強度に達する。

3) 接合部の変形が終局変形に達する。

(2) 等価一自由度系に関する諸量

荷重増分解析による各層の層せん断力-層間変位関係をもとに、限界耐力計算告示(平12建告 第1457号)第3を準用して等価一自由度系に関する諸量を(4.2.7)~(4.2.9)式によって求め る。

$$A = Q_B \cdot \frac{\sum m_i \cdot d_i^2}{(\sum m_i \cdot d_i)^2} :$$
加速度 (4.2.7)
$$\Delta = \frac{\sum m_i \cdot d_i^2}{\sum m_i \cdot d_i} :$$
代表変位 (4.2.8)
$$M_u = \frac{(\sum m_i \cdot d_i)^2}{\sum m_i \cdot d_i^2} :$$
有効質量 (4.2.9)

(3) D_sの評価方法

終局時に至るまでの加速度 A-代表変位 △関係に対応するエネルギー的に等価な完全弾塑性 バイリニア関係から計算される塑性率 μ を用いて (4.2.10) 式により D_s を計算する。

$$D_s = \frac{1}{\sqrt{2\mu - 1}} \qquad : \ (4.2.10)$$

(4) R_fの評価方法

部材・接合部を塑性化要素と弾性要素に区分し、それらの R_fを(4.2.11)式、(4.2.12)式によっ て算出する。塑性化要素とは終局時に塑性化(非線形化)を許容する部材・接合部であり、弾性 要素とは終局時においても弾性範囲(終局耐力以下)に留める部材・接合部である。

塑性化要素	$R_f = \max(R_{fl}, 1.0)$	(4.2.11)
-------	---------------------------	----------

弹性要素 $R_f = \max(R_{fl}, R_{f2} / \gamma_a, 1.0)$ (4.2.12)

$$R_{f1} = \frac{Q_a}{Q_u} \cdot \frac{D_s}{0.2}$$
(4.2.13)

$$R_{f2} = \frac{f}{F} \cdot \frac{s_u}{s_a} \tag{4.2.14}$$

- γ_a:1 次設計時水平耐力検定比
- Q_a :許容耐力時ベースシア
- Q_u :終局時ベースシア
- f:短期許容応力度または短期許容耐力
- F : 基準強度または終局耐力
- sa : 許容耐力時応力
- su :終局時応力

(5) 耐力壁の許容水平耐力算出方法

文献 2 を参考に、上下に連層する耐力壁(壁列)ごとに*i* 階壁脚部の転倒モーメントの許容値 $M_{Ta,i}$ を規定することを考える。運用上は、 A_i 分布に基づくベースシア係数 $C_0=0.2$ の層せん断力を もとに、層ごとに耐力壁の水平剛性 K_h に比例するものとして耐力壁の負担水平力 Q_i を求め、それ らをもとに各壁列の*i* 階壁脚部の転倒モーメント $M_{T,i}$ を次のように算出し、 $M_{T,i} \leq M_{Ta,i}$ であること を検定する。

3 層壁列
$$M_{TI} = (Q_1 - Q_2) \cdot H_1 + (Q_2 - Q_3) \cdot H_2 + Q_3 \cdot H_3$$
 (4.2.15)
 $M_{T2} = (Q_2 - Q_3) \cdot H_2 + Q_3 \cdot H_3$
 $M_{T3} = Q_3 \cdot H_3$
2 層壁列 $M_{TI} = (Q_1 - Q_2) \cdot H_1 + Q_2 \cdot H_2$ (4.2.16)
 $M_{T2} = Q_2 \cdot H_2$
1 層壁列 $M_{T2} = Q_2 \cdot H_1$ (4.2.17)
ここで、 $H_i : i$ 階床レベルの基礎からの高さ

許容転倒モーメント*M_{Tai}*および耐力壁の水平剛性*K*hは現行の耐力壁の許容水平耐力と同様に、 壁列に取付く垂壁・腰壁枚数に応じて算出するものとし、その算出式は壁構面に対応する平面モ デルを用いた増分解析パラスタに基づいて設定する。

また、終局耐力時換算転倒モーメント Mra を次式で定義する。

$$M_{Td} = M_{Tu} \frac{0.2}{D_s}$$

(4.2.18)

ここで、

M_{Td}:保有耐力時の点とモーメント

$$D_s = \frac{1}{\sqrt{2\mu - 1}}$$

μ:保有耐力時の等価一自由度系の塑性率

許容転倒モーメント $M_{Ta,i}$ は、 $M_{Ta,i}$ =Min($M_{T,i}, M_{Td,i}$)で定義し、許容水平耐力 $Q_{a,i}$ は、 $Q_{a,i}$ /H_iで定義する。

(6) 解析的検討モデル

① 構造モデルの種類と構成

許容水平耐力 Qa、壁脚部の転倒モーメントの許容値 M_{Ta}、構造特性係数 D_s、応力割増し係数 R_f 等の算出式導出のためのパラスタを行う。

- ・対象架構は2つの壁列と垂壁・腰壁で構成される「1スパン架構」、3つの壁列と垂壁・腰壁 で構成される「2スパン架構」、および水平方向に壁パネルが連続する「連続壁架構」とする。
- ・それらに対応する構造モデルを図 4.2.1 のように設定して、Ai分布に従う地震水平力に対する 荷重増分解析を行う。
- ・壁勝ち架構については「腰壁なし」、「1 階腰壁無し」、「腰壁あり」の3 種類について1スパン架構と2スパン架構を対象に検討する。
- ・壁勝ち架構との比較のため、床勝ち架構についても「腰壁なし」、「1 階腰壁無し」、「腰壁あり」の3 種類について1 スパン架構と2 スパン架構について検討する。
- ・集成材合わせ梁接合部を有する壁勝ち架構については「腰壁無し」について、1 スパン架構 と2 スパン架構を対象に検討する。
- ・各架構共通の設定条件を次のように設定する。
- ○階高は 3.0m、垂壁高さは 0.5m、腰壁高さは 0.9m とする。
- ○CLT パネルは S60-3-3 (90mm 厚)とする。
- 圧縮バネは CLT パネル断面を 10 分割するように配置する、引張バネは壁端から 100mm の 位置に配置する。
- ○構面の左右両端に長さ 1m の直交耐力壁があるものとして、それに対応する軸要素を配置し、材端には引張接合部 2 か所存在するものとして、それに対応する引張バネ要素と著効 壁の断面に相当する圧縮バネ要素を配置する。
- ○床パネルの面外剛性は0とする。
- ○固定荷重及び積載荷重として、各床レベル耐力壁頭部の左右両端節点に鉛直荷重 10L_w (kN)、 屋根レベルでは 7.5L_w(kN)を与える。ここで、L_wは耐力壁長さ(m)である。解析の初ステッ プでこれらの鉛直荷重に対する応力・変位を求め、以降はA_i分布に従う地震水平力に対す る荷重増分解析を行う。また、A_iは階ごとに鉛直荷重の合計を階の重量として算定する。

上記以外の検討パラメータを次のように設定する。

○層数 : 2,3

○壁長さ*L*_w : 1.0, 1.5, 2.0 (m)

○開口長さ*L*₀:1.0,2.0,4.0(m)

図 4.2.1 解析モデルの例(左:床勝ちモデル、右:壁勝ちモデル)

(2) 接合部の応力変形特性

- 文献3を参考に、接合部の応力変形関係を表4.2.1~4.2.2、図4.2.2~4.2.3のように設定する。
 ○せん断バネのうち「壁-基礎(水平)」と「壁-床(水平)」については摩擦抵抗として、それらの接合部に存在する引張バネの終局耐力の0.3倍を考慮できるものとして、せん断バネの耐力にその摩擦力を加算し、
 - ○CLT パネルの剛性は、「CLT 設計施工マニュアル」⁴⁾(以下「施工マニュアル」と記載)第 Ⅲ部 3.3.1 項に準拠して公称値を設定する。
| 接合 | 箇所 | χマーク | バネ | ボルト径 | 規格 | Lb | k_1 | k_2 | k_3 | $_L P_a$ | sPa | P_u | P_u' | δ_y | δ_v | δ_u |
|----|---------|----------|---------------------|----------------------|----------|-----------|-----------------------------|-------------------|-----------------------|-------------|--------------------|-------|--------|------------|------------|------------|
| | | 符号 | 名称 | [mm] | | [mm] | [kN/mm] | [kN/mm] | [kN/mm] | [kN] | [kN] | [kN] | [kN] | [mm] | [mm] | [mm] |
| 壁- | 基礎 | TB-90 | WBT16 | M16 | ABR490 | 400 | 35.00 | 35.00 | 0.004 | 28.05 | 51.00 | 59.30 | 59.43 | 1.46 | 1.69 | 40.00 |
| 壁 | - 壁 | TC-90 | WWT16 | M20 | ABR490 | 200 | 37.97 | 37.97 | 0.004 | 43.78 | 79.60 | 93.00 | 93.07 | 2.10 | 2.45 | 20.00 |
| 壁- | 屋根 | TC-90 | WRT16 | M20 | ABR490 | 200 | 65.97 | 65.97 | 0.007 | 43.78 | 79.60 | 93.00 | 93.12 | 1.21 | 1.41 | 20.00 |
| | L | b:ボルト | 、有効長さ | ・
さ、 <i>k</i> 1:初 | 期剛性、 | k_2 : [| 二次剛性、 | k 3:三次 | ,
刚性、 _H | Pa:長 | 期許名 | ~ 耐力 | sPa | 短期 | 許容而 | 讨力、 |
| | | | $P_u: 終 同$ | 。
时力、 P u' | :終局変用 | -
ド時の | 荷重、 δ _v : | 短期許容 | 耐力時の | 変形、 | δ _v :終) | 局耐力 | 時の変 | Σ形、δ | u:終肩 | 司変形 |
| | | | | | | | ,,,,, | | | | | | | | | |
| | | - | 1 | | | | | | | 1 | | | | | | |
| | WB | T16 | 100 T | | | | | WV | VT16 | 100 | . | | _ | | | |
| | 壁- | 基礎 | ••• T | | | | | 壁 | 一壁 | 00 | <u>†</u>] | | | | | |
| | М | 16 | •° [| | 1 | | | N | 120 | 80 | Ii | | | | | |
| | ABI | R490 | 60 | , <u></u> | | | | AB | R490 | 60 | ¥ | | | | | |
| | $L_b=4$ | 00mm | N H | | | | | L _b =2 | .00mm | Ž | Ŧ/ | | | | | |
| | δ | Р | a 40 ₩ | | | | | δ | Р | a 40 | ₩ | | | | | |
| [| mm] | [kN] | 1 | | | | | [mm] | [kN] | | ť | | | | | |
| (| 0.00 | 0.00 | 20 - | | | | | 0.00 | 0.00 | 20 | | | | | | |
| | 1.46 | 51.00 | | | <u> </u> | - WE | 3T16 | 2.10 | 79.60 | 0 | 1 | | | | WW | F16 |
| | 1.69 | 59.30 | 0 | 10 | 20 30 | 40 | 50 | 2.45 | 93.00 | | 0 | 10 | 20 | 30 | 40 | 50 |
| 4 | 0.00 | 59.43 | Ť | | δ[mm] | | • • | 20.00 | 93.07 | | Ť | | ¯δ[m | m] | | ••• |
| | | | ı
(a) | 辟-其碑 | Ż | | | | | 1 | (h) 眉 | 座— | 2 | | | |
| | WD | T16 | 1_{100} | 主法规 | - | | | | | | (0) = | | - | | | |
| | 辟_ | 层根 | | | -• | | | | | | | | | | | |
| - | SE M | 空低
20 | 80 | | | | | | | | | | | | | |
| | | 20 | ∦ | | | | | | | | | | | | | |
| _ | ABI | x490 | \overline{z}^{60} | | | | | | | | | | | | | |
| | L b=2 | 00mm | | | | | | | | | | | | | | |
| | δ | Р | ► 40 F | | | | | | | | | | | | | |
| [| mm] | [kN] | 20 | | | | | | | | | | | | | |
| | 0.00 | 0.00 | 20 | | | | T16 | | | | | | | | | |
| | 1.21 | 79.60 | 0 - | | | - WF | 110 | | | | | | | | | |
| | 1.41 | 93.00 | 0 | 10 | 20 30 | 40 | 50 | | | | | | | | | |
| 2 | 0.00 | 93.12 | | | o[mm] | | | | | | | | | | | |
| | | | (c) | 壁一屋根 | Ę | | | | | | | | | | | |

表 4.2.1 鉛直構面引張接合部バネの構造性能

図 4.2.2 鉛直構面引張接合部バネの荷重-変形関係

B.構造分野

接合箇所	χマーク	バネ	k_1	k_2	<i>k</i> 3	$_LP_a$	sPa	P_u	P_u'	δ_y	δ_{v}	δ_u
	符号	名称	[kN/mm]	[kN/mm]	[kN/mm]	[kN]	[kN]	[kN]	[kN]	[mm]	[mm]	[mm]
壁-基礎	SB90	US14X	1000	3.11	0.008	41.15	62.30	100.49	100.50	0.06	12.34	13.78
壁-基礎	SB90×2	US28X,US28Y	1000	6.04	0.016	67.00	109.30	183.19	183.21	0.11	12.34	13.78
壁一床	LST×2	LS18X	1000	3.97	0.012	53.58	77.88	117.9	118.06	0.08	10.17	23.86
壁一床	LST×4	LS36X,LS36Y	1000	7.57	0.024	82.28	131.88	207.9	208.23	0.13	10.17	23.86
床-垂れ壁	LST×2	LS18TFX	11.90	6.39	0.012	29.70	54.00	90.00	90.16	4.54	10.17	23.86
壁-垂れ壁	SP×2	PS18X	20.00	12.75	0.020	28.60	52.00	109.50	109.77	2.60	7.11	20.65

表 4.2.2 鉛直構面せん断接合部バネの構造性能

 $k_1: 初期剛性、k_2: 二次剛性、k_3: 三次剛性、<math>LP_a: 長期許容耐力、sP_a: 短期許容耐力、P_u: 終局耐力、 P_u: 終局である。$ $P_u: 終局変形時の荷重、<math>\delta_y: 短期許容耐力時の変形, \delta_v: 終局耐力時の変形, \delta_u: 終局変形$

各圧縮バネの降伏耐力P_y、終局耐力P_u、弾性剛性k₁及び降伏後剛性k₂,k₃は(4.2.19)~(4.2.31)式の ように設定する。圧縮バネについては、MS モデルにおいて、断面分割数を10(等間隔)として、負 担面積に応じた圧縮バネを等間隔に配置する。図4.2.4 に圧縮バネの応力変形関係を示す。

(4.2.21)

壁パネル-基礎(支圧型)

$$P_u = F_c \cdot A_e \tag{4.2.19}$$

$$k_1 = k_e \cdot A_e \tag{4.2.20}$$

$$k_2 = k_1 / 10000$$
壁パネルー床(めり込み型)

$$P_y = F_{cv} \cdot A_e \tag{4.2.22}$$

$$P_u = F_c \cdot A_e \tag{4.2.23}$$

$$k_1 = \frac{E_{90} \cdot A_e}{Z_0} \tag{4.2.24}$$

$$k_2 = k_1 / 8 \tag{4.2.25}$$

$$k_3 = k_1 / 10000 \tag{4.2.26}$$

壁パネル-垂れ壁パネル(めり込み型)

$$P_y = F_{cv} \cdot A_e \tag{4.2.27}$$

$$P_u = F_c \cdot A_e \tag{4.2.28}$$

$$k_1 = \frac{1.5E_{90} \cdot A_e}{Z_0} \tag{4.2.29}$$

$$k_{2} = k_{1} / 8$$

$$k_{3} = k_{1} / 10000$$
(4.2.31)

ここで、F_c:壁パネルの圧縮基準強度(Fc=10.8N/mm2)

Ae : MS モデルにおける負担面積

ke: 壁パネルの支圧剛性(ke = 15.6N/mm3)

Fcv : 壁パネルのめり込み基準強度(Fcv=6.0N/mm2)

E90:壁パネルのラミナ繊維直交方向のヤング係数

(= 繊維平行方向のヤング係数6000N/mm²の1/30=200N/mm²)

Z₀:壁パネルのラミナ幅(Z₀=120mm)

図 4.2.4 圧縮バネの応力変形関係

(3) CLT 柱-集成材合わせ梁モーメント抵抗接合部のモデル化方法

CLT 柱-集成材合わせ梁モーメント抵抗接合部の仕様を表 4.2.3 に、仕様の一例(壁幅 1000mm) を図 4.2.5 に示す。

部位	仕様	樹種・材料	寸法(mm)
CLT 壁パネル	S60-3-3(t=90mm)	スギ	90×1,000
合せ梁	E120-F330 対称異等級構成集成材	オウシュウアカマツ	2 - 90×500
接合具	2面せん断ビス接合	32-PS8×260	—
せん断キー受け	鋼板添え板1面 せん断ビス接合	2-40-TBA65	—
せん断キーピン	丸鋼	SS400	φ40

表 4.2.3 CLT 柱-集成材合わせ梁モーメント抵抗接合部の仕様

図 4.2.5 接合部仕様の例 (壁幅 1000mm)

構造解析モデルは、図 4.2.6 に示すように CLT 壁-合わせ梁接合部の交点に回転ばねを有するモ デルとなる。接合部の M-θ 関係は表 4.2.4 に示す計算値を用いる。計算値と実験値の関係を図 4.2.7 に示す。

(1) ト形接合部

(2)十字接合部

図 4.2.6 合わせ梁接合部のモデル化の方法

降伏モーメント(kNm)My	211.5
降伏回転角(rad)θy	0.015
終局モーメント(kNm)Mu	211.1
終局回転角(rad) θ_u	0.033
初期剛性(kN/mm)K	11347

表 4.2.4 合わせ梁接合部の性能値(計算値)

図 4.2.7 CLT 壁-合わせ梁接合部の荷重変形関係(計算値と実験値)

4.2.3 計算結果

(1) 3 層架構の解析結果

図 4.2.8~4.2.13 に、3 層床勝ち架構および壁勝ち架構の①Ma/H (kN/m: 左図)、②Ds (中央図)、 ③Rf1 (右図)の計算結果を示す。また各解析モデルの短期許容耐力および終局耐力を決定する因 子を表に示す。表中の「1F 接合部」は1 階壁脚部の引張接合部が決定因子、「2F_1/150」は2 層の 層間変形角 1/150rad が決定因子、「2F 接合部」は2 階壁脚部の引張接合部が決定因子、「CLT 破壊」 は CLT 壁の曲げ圧縮破壊または曲げ引張破壊が決定因子、「壁脚圧縮」は1 階壁脚部の圧縮強度 が決定因子である。

壁長		1m			1.5m		2m				
開口長	1m	2m	4m	1m	2m	4m	1m	2m	4m		
短期	2F_1/150	2F_1/150	2F_1/150	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部		
終局	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部		

壁長		1m			1.5m		2m				
開口長	1m	2m	4m	1m	2m	4m	1m	2m	4m		
短期	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部		
終局	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部		

(2)壁勝ち

図 4.2.8 3 層_腰壁なし(1 スパン)

(2)床勝ち(2F 壁脚接合部の塑性化を 20mm 許容する)

 $2D_s$

 $\Im R_{f1}$

壁長		1m			1.5m		2m				
開口長	1m	2m	4m	1m	2m	4m	1m	2m	4m		
短期	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部		
終局	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部		

(3)壁勝ち

図 4.2.9 3 層_1 階腰壁なし(1 スパン)

壁長		1m			1.5m		2m				
開口長	1m	2m	4m	1m	2m	4m	1m	2m	4m		
短期	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部		
終局	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部		

壁長		1m			1.5m		2m				
開口長	1m	2m	4m	1m	2m	4m	1m	2m	4m		
短期	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部		
終局	1F 接合部	1F 接合部	CLT 破壊	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部		

(2)壁勝ち

図 4.2.10 3 層_腰壁あり(1 スパン)

壁長		1m			1.5m		2m				
開口長	1m	2m	4m	1m	2m	4m	1m	2m	4m		
短期	2F_1/150	2F_1/150	2F_1/150	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部		
終局	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部		

壁長		1m			1.5m			2m	
開口長	1m	2m	4m	1m	2m	4m	1m	2m	4m
短期	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部
終局	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部

(2)壁勝ち

図 4.2.11 3 層_腰壁なし(2 スパン)

(3)壁勝ち

図 4.2.12 3 層_1 階腰壁なし(2 スパン)

壁長		1m			1.5m		2m				
開口長	1m	2m	4m	1m	2m	4m	1m	2m	4m		
短期	壁脚圧縮	壁脚圧縮	壁脚圧縮	壁脚圧縮	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部		
終局	1F 接合部	CLT 破壊	CLT 破壊	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部		

 $\Im R_{\mathrm{fl}}$

壁長	1m			1.5m			2m		
開口長	1m	2m	4m	1m	2m	4m	1m	2m	4m
短期	壁脚圧縮	壁脚圧縮	壁脚圧縮	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部
終局	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部

(2)壁勝ち

図 4.2.13 3 層_腰壁あり(2 スパン)

(2) 2 層架構の解析結果

図 4.2.14~4.2.19 に、2 層床勝ち架構および壁勝ち架構の①Ma/H(kN/m:左図)、②Ds(中央 図)、③Rfl(右図)の計算結果を示す。また各解析モデルの短期許容耐力および終局耐力を 決定する因子を表に示す。

壁長	1m			1.5m			2m		
開口長	1m	2m	4m	1m	2m	4m	1m	2m	4m
短期	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部
終局	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部

(1)床	勝	ち
------	---	---

壁長	1m			1.5m			2m		
開口長	1m	2m	4m	1m	2m	4m	1m	2m	4m
短期	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部
終局	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部

図 4.2.14 2 層_腰壁なし(1 スパン)

	0	. ,								
壁長	1m			1.5m			2m			
開口長	1m	2m	4m	1m	2m	4m	1m	2m	4m	
短期	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	
終局	2F 接合部	2F 接合部	2F 接合部	2F 接合部	2F 接合部	1F 接合部	2F 接合部	1F 接合部	1F 接合部	

(1)床勝ち(2F 壁脚接合部の塑性化を許容しない)

壁長	1m			1.5m			2m		
開口長	1m	2m	4m	1m	2m	4m	1m	2m	4m
短期	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部
終局	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部

(2)床勝ち(2F 壁脚接合部の塑性化を 20mm 許容する)

(1) M_{ta}/H (kN/m)

 $(2)D_s$

 $\Im R_{fl}$

壁長	1m			1.5m			2m		
開口長	1m	2m	4m	1m	2m	4m	1m	2m	4m
短期	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部
終局	CLT 破壊	CLT 破壊	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部

(3)壁勝ち

図 4.2.15 2 層_1 階腰壁なし(1 スパン)

壁長	1m			1.5m			2m		
開口長	1m	2m	4m	1m	2m	4m	1m	2m	4m
短期	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部
終局	1F 接合部	CLT 破壊	CLT 破壊	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部

$(I)M_{ta}/H$	(kN/m)

2	D_{s}

 $\Im R_{f1}$

壁長	1m			1.5m			2m		
開口長	1m	2m	4m	1m	2m	4m	1m	2m	4m
短期	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部
終局	1F 接合部	1F 接合部	CLT 破壊	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部

(2)壁勝ち

図 4.2.16 2 層_腰壁あり(1 スパン)

壁長	1m			1.5m			2m		
開口長	1m	2m	4m	1m	2m	4m	1m	2m	4m
短期	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部
終局	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部

壁長	壁長 1m			1.5m			2m		
開口長	1m	2m	4m	1m	2m	4m	1m	2m	4m
短期	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部
終局	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部

(2)壁勝ち

図 4.2.17 2 層_腰壁なし(2 スパン)

壁長	1m				1.5m			2m		
開口長	1m	2m	4m	1m	2m	4m	1m	2m	4m	
短期	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	
終局	2F 接合部	2F 接合部	2F 接合部	2F 接合部	2F 接合部	2F 接合部	2F 接合部	1F 接合部	1F 接合部	

(1)床勝ち(2F 壁脚接合部の塑性化を許容しない)

(2)床勝ち(2F 壁脚接合部の塑性化を 20mm 許容する)

(3)壁勝ち

1F 接合部

1F 接合部

1F 接合部

1F 接合部

1F 接合部

1F 接合部

CLT 破壊

CLT 破壊

終局

CLT 破壊

図 4.2.18 2 層_1 階腰壁なし(2 スパン)

壁長	1m				1.5m			2m		
開口長	1m	2m	4m	1m	2m	4m	1m	2m	4m	
短期	壁脚圧縮	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	
終局	1F 接合部	CLT 破壊	CLT 破壊	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	

(1)床勝ち

壁長	1m			1.5m			2m		
開口長	1m	2m	4m	1m	2m	4m	1m	2m	4m
短期	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部
終局	CLT 破壊	CLT 破壊	CLT 破壊	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部

(3)壁勝ち

図 4.2.19 2 層_腰壁あり(2 スパン)

(3) CLT 壁-集成材合わせ梁架構の解析結果

図 4.2.20~4.2.23 に、3 層および2 層の CLT 壁-集成材合わせ梁架構の①M_a/H(kN/m: 左図)、 ②D_s(中央図)、③R_{fl}(右図)の計算結果を示す。また各解析モデルの短期許容耐力および終局 耐力を決定する因子を表に示す。

壁長	1m			1.5m			2m		
開口長	1m	2m	4m	1m	2m	4m	1m	2m	4m
短期	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部
終局	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部

図 4.2.20 3 層_CLT 壁-集成材合わせ梁架構 1 スパン

壁長	1m				1.5m			2m		
開口長	1m	2m	4m	1m	2m	4m	1m	2m	4m	
短期	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	
終局	1F 接合部	CLT 破壊	CLT 破壊	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	

図 4.2.21 3 層__CLT 壁-集成材合わせ梁架構 2 スパン

壁長	1m				1.5m			2m		
開口長	1m	2m	4m	1m	2m	4m	1m	2m	4m	
短期	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	
終局	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	

図 4.2.22 2 層_CLT 壁-集成材合わせ梁架構1スパン

壁長	1m			1.5m			2m		
開口長	1m	2m	4m	1m	2m	4m	1m	2m	4m
短期	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部
終局	CLT 破壊	CLT 破壊	CLT 破壊	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部	1F 接合部

図 4.2.23 2 層_CLT 壁-集成材合わせ梁架構 2 スパン

4.2.4 構造計算に必要な係数

(1) CLT 壁勝ち工法の構造計算に必要な係数

4.2.3(1)節と(2)節で壁勝ち架構の許容応力度計算に必要な係数(M_{ta}/H)と、比較のために床勝 ち架構の係数を計算した。結果は架構形状(腰壁・垂れ壁の有無)や開口長さの影響を受けるも のであるが、現行規定では壁長さのみがパラメータとなっている。そのたため、表 4.2.5 に壁勝ち 架構の無開口壁パネル長さのみをパラメータとした算定結果を、表 4.2.6 に、床勝ち架構の無開口 壁パネル長さをパラメータとした算定結果を、表 4.2.7、表 4.2.8 に壁勝ち架構で層数、架構形状 (腰壁・垂れ壁の有無)と無開壁ロパネル長さを考慮した係数の案を示す。

表 4.2.5 壁勝ち架構の許容応力度等に必要な係数 M_{ta}/H(kNm/m)

武士略の構体	無開口壁パネル等の長さ L _w						
耐力壁の構造	$0.9m \leq L_w \leq 1.5m$	$1.5m < L_w \leq 2.0m$	$2.0m < L_w$				
小幅パネル架構 大版パネル架構①	30	25	20				

表 4.2.6 床勝ち架構の許容応力度等に必要な係数 M_{ta}/H(kNm/m)

武力時の構造	無開口壁パネル等の長さ L _w						
耐力産の構造	$0.9m \leq L_w \leq 1.5m$	$1.5m < L_w \leq 2.0m$	$2.0m < L_w$				
小幅パネル架構 大版パネル架構①	25	25	25				

表 4.2.7 壁勝ち架構の許容応力度等に必要な係数 M_{ta}/H(kNm/m):3 層

耐力壁の	架構	無開口	コ壁パネル等の長さ」	Lw
構造	形状	$0.9m \leq L_w \leq 1.5m$	$1.5m \le L_w \le 2.0m$	$2.0m < L_w$
小幅パネル	腰壁なし	40	35	35
架構 大版パネル	1層腰壁	55	50	45
架構①	全層腰壁	65	50	45

表 4.2.8 壁勝ち架構の許容応力度等に必要な係数 M_{ta}/H(kNm/m):2 層

耐力壁の	架構	無開口	コ壁パネル等の長さ」	Lw
構造	形状	$0.9m \leq L_w \leq 1.5m$	$1.5m \le L_w \le 2.0m$	$2.0m < L_w$
小幅パネル	腰壁なし	30	25	20
架構 大版パネル	1層腰壁	35	30	30
架構①	全層腰壁	40	35	30

B.構造分野

4.2.3(1)節と(2)節で壁勝ち架構の許容応力度等計算、保有水平耐力計算に必要な係数と比較のために床勝ち架構の係数を計算した結果、壁勝ち架構の係数は、床勝ち架構の係数と同程度か下回る結果であった。そのため、表 4.2.9 のように、壁勝ち架構の許容応力度等計算、保有水平耐力計算に床勝ち架構の構造計算に用いる値を用いることができると考えられる。

ᇌᅪᇠᇰᄖᆥᄽ	無開口壁パネル等の長さLw(上段:Ds, 下段:Rfi)		
剛力壁の構垣	$0.9m \leq L_w \leq 1.5m$	$1.5m \le L_w \le 2.0m$	$2.0m < L_w$
小幅パネル架構	0.4	0.5	0.55
大版パネル架構①	1.3	1.6	1.8

表4.2.9 壁勝ち架構の許容応力度等計算、保有水平耐力計算に必要な係数

一方、表 4.2.9 は壁長が長くなると数値が大きくなるが、4.2.3(1)節と(2)節の検討結果からは壁長が大きくなっても数値は変わらないか、低くなる傾向となるため、表 4.2.10 のように緩和することも考えられる。

ただし、「1 層腰壁無し」・「腰壁有」では Ds が大きくなるケースがあり、それについては仕様を 規定する必要がある。

	表 4.2.10	壁勝ち架構の許容応力度等計算、	保有水平耐力計算に必要な係数	(緩和案)
--	----------	-----------------	----------------	-------

武力時の構造	無開口壁パネル等の長さ L _w (上段:D _s , 下段:R _{fl})			
剛力壁の構垣	$0.9m {\leq} L_w {\leq} 1.5m \qquad 1.5m {<} L_w {\leq} 2.0m \qquad 2.0m {<} L_w$			
小幅パネル架構	0.35~0.4			
大版パネル架構①		1.0		

(2) CLT 壁-集成材合わせ梁架構の構造計算に必要な係数

4.2.3(3)節で集成材合わせ梁架構の構造計算に必要な係数を検討した。表 4.2.11、表 4.2.12 に、 集成材合わせ梁架構の許容応力度計算に必要な係数を、表 4.2.13 に許容応力度等計算、保有水平 耐力計算に必要な係数を示す。

表 4.2.11 CLT 壁-集成材合わせ梁架構の許容応力度計算に必要な係数 Mta/H(kN/m):3 層架構

武士陸の構造	無開口壁パネル等の長さ Lw		
耐力壁の構造	$0.9m \leq L_w \leq 1.5m$	$1.5m \le L_w \le 2.0m$	$2.0m < L_w$
集成材 合わせ梁架構	40	35	35

表4.2.12 CLT 壁-集成材合わせ梁架構の許容応力度計算に必要な係数 Mta/H(kN/m):2 層架構

おも時の様体	無開口壁パネル等の長さ L _w		
剛刀壁の構道	$0.9m \leq L_w \leq 1.5m$	$1.5m \le L_w \le 2.0m$	$2.0m < L_w$
集成材 合わせ梁架構	30	30	25

. 2.13 CLT 壁−集成材合わせ梁架構	冓の許容応力度等計算、	保有水平耐力計算(こ必要な係数
.2.13 0L1 堂- 耒戌村合わせ栄栄権	再の許谷心力及寺計昇、	休有水平 刀計昇	この名の!

副も時の構体	無開口壁パネル等の長さ L _w (上段:D _s , 下段:R _{fl})		
町刀壁の構造	$0.9m \leq L_w \leq 1.5m$	$1.5m \le L_w \le 2.0m$	$2.0m < L_w$
集成材	0.55	0.45	0.4
合わせ梁架構	1.0	1.0	1.0

[参考文献]

文献 1: 2019 年 林野庁補助・技術開発支援事業「CLT パネル工法の構造計算方法の拡充検討事業」 報告書

 $\frac{https://6da70c9a-7b50-48ff-864d-b09aeb852b80.filesusr.com/ugd/79e72d_8fec771e9c47}{483f849dec6ee288b6ee.pdf}$

文献 2: 2018 年 林野庁委託事業「CLT パネル工法の構造計算関係規定の拡充・合理化検討事業」 報告書

 $\frac{https://6da70c9a-7b50-48ff-864d-b09aeb852b80.filesusr.com/ugd/79e72d_ea1102cd1328}{49fb89efa47d0c7e4eb9.pdf}$

- 文献 3: CLT を用いた建築物の設計施工マニュアル(改訂原稿案)
- 文献 4: 2016 年版 CLT を用いた建築物の設計施工マニュアル 増補版,日本住宅・木材技術センター

4.3 木質復興住宅の構造設計事例及び設計の留意点

4.3.1 検討概要

本設計例では、CLT パネル工法による5階建て共同住宅(災害公営住宅)建築物を対象に、「平 28国交告第611号第八(保有水平耐力計算と同等以上に安全性を確かめることができる構造計算)」 に準拠し、構造設計を実施し、設計上の留意点を取りまとめた。設計事例は付録としている。な お、建物階数が5階建て共同住宅のため耐火構造を要求されることから、本設計例では壁、床の 耐火仕様による荷重を考慮して設計した。

4.3.2 建築物概要

表 4.3.1 に建物概要を示す。本設計例で対象とした建築物は、東京都区部に建つ耐火構造の CLT パネル工法による地上 5 階最高高さ 16.72m、平面寸法は長辺方向 43.0m×短辺方向 9.9m、各階床 面積約 425.7m2、延べ面積 2,200.56m2 の共同住宅である。住宅部分は 1LDK,3DK,3LDK を各通り に界壁を設け 6.25~8.0m×9.9m の居住空間としている。 構造形式は長辺方向(以下、X 方向)及 び、短辺方向(以下、Y 方向)ともに外壁や界壁部分に CLT 壁パネルを配置した CLT パネル工 法である。X 方向外壁(Y2,Y5 通り)は鉛直構面勝ちとして開口部に垂れ壁パネルを取付けてい る。

建築物の名称	構造設計例Ⅲ
建設場所	東京都区部を想定
用途	共同住宅
建築面積	625.46 m ²
延べ面積	2,200.56 m ²
基準階面積	425.70 m ²
階数	地上5階 地下無 塔屋無
高さ関係	最高高さ:設計 GL+16.72m 軒高:設計 GL+15.50m
基準階階高	3.06m
構造種別	上部構造:CLTパネル工法
	下部構造:杭基礎を想定
耐火構造区分	耐火構造

表 4.3.1 建築物概要

4.3.3 設計図書

図 4.3.1 に1 階平面図、図 4.3.2 に基準階平面図、図 4.3.3~4.3.4 に立面図、図 4.3.5 に矩 形図を示す。

図 4.3.2 基準階平面図

B.構造分野

B.構造分野

図 4.3.5 矩形図

4.3.4 構造設計上の留意点

以下に CLT パネル工法による 5 階建て共同住宅(災害公営住宅)建築物を対象に、「平28 国交 告第 611 号第八(保有水平耐力計算と同等以上に安全性を確かめることができる構造計算)」に 準拠し、構造設計を実施する際の留意点を記す。

(1) 材端弾塑性回転ばねを設けたモデルの採用

本設計事例では、解析モデルを壁端部に弾塑性回転ばねを設けたモデルとし、CLT 工法を設計 したことがない一般の構造設計者も理解しやすく、応力の流れも把握しやすいため、建物の性状 をより理解できると考えられる。今後は、曲げと軸力を考慮できる回転バネモデルをより精度の 良いもの(例えば RC 造のように直交も考慮した M-M-N モデルなど)として、設計に考慮する方法 も考えられる。

(2) ダミー層の設定

本設計事例では、CLT 床パネルと CLT 垂れ壁パネルが一体の形状でないこと、垂れ壁パネルの 有無で構造芯及び壁パネル壁頭壁脚の回転バネの位置が一致しないことから、今回は床パネルレ ベルにダミー層を設定した。

別の方法として、ダミー層を設けずに、床パネルと垂れ壁パネルの構造芯を合わせてモデル化 を行い、階高間は取り付く壁パネルの高さを調整するといったモデル化も一つの方法と考えられ る。

(3) 壁柱-垂れ壁間パネルゾーンの応力検定の方法

従来の CLT の設計においてもパネルゾーンのモデル化及び検討が示されていることから、木質 ラーメンによるパネルゾーンの検討を用いて検定を行った。接合金物等による断面欠損をどの程 度まで考慮するかは今後の課題の一つである。

(4) 短期と終局時の CLT パネル接合部の検定方法

1 階壁脚の検討、特に基礎部分(RC 造)とアンカーボルト、ベースプレートの検討において は「鋼構造接合部設計指針」を参考にした。

ただし、接合箇所に生じる引抜力が大きい場合はアンカーボルトで処理するにはボルト径を大 きくするか、ボルトの強度をより高いものにしないと設計上厳しい形になるため、今回の設計例 では CLT せん断用接合具を用いて直交壁と緊結させる事で引抜力を抑え込む検討を行った。

(5) 回転剛性の算出方法や、圧縮ばねの設定方法

今回の試設計では、CLT 圧縮端部の支圧剛性の違いによる回転剛性の変化が全体挙動に与える 影響を確認したが、余裕のある耐力設定のおかげで建物全体への影響は少ない結果だった。ただ し、回転剛性の変化を見る限り支圧剛性の違いで一割程度の回転剛性の違いが生じることを考え ると、支圧剛性の設定は設計時に大きな違いが生じるものと考えられ、今後の検討が必要である。