6．気候変動による水質変化と適応策のまとめ

本研究では， 4 つのケーススタディダム（釜房ダム，耶馬溪ダム，寒河江ダム，早明浦ダム）を対象として，RCP シナリオに基づく気候モデルの出力結果をもとに気候変動による水質変化を予測するとともに，影響が大きいと判断される現象に対して有効となる適応策の効果を一例として試算した。本研究により得られた，ケーススタディダムにおける知見をまとめると以下のとおり。

【藻類増殖】

（気候変動による水質変化の予測）
＞ケーススタディダムにおいては，気候変動により，平均年降水量はやや増減するものの，気温上昇による蒸発散量も増大するため，平均年総流入量が顕著な増加を示すケースはほとん どない。そのため，流入負荷量が顕著に増加するケースもほとんどないと考えられ，全体的 には，藻類増殖に顕著な変化は見られない。ただし，釜房ダム，耶馬溪ダムにおいては，気温上昇に伴う水温上昇により藻類増殖期が早期化•長期化する場合が見られる。
（適応策）
＞このような藻類増殖に対する適応策としては，既設の曝気循環施設が有効であり，更には，釜房ダムでは散気量の増量，耶馬溪ダムで曝気開始時期の前倒し及び散気量増量により，効果が増すと考えられる。

【底層水質悪化】

（気候変動による水質変化の予測）
＞ケーススタディダムのうち耶馬溪ダム，寒河江ダムにおいては，気候変動により，水温上昇 に伴う有機物分解のための酸素消費量が増加し，底層の貧酸素化の進行が見られる。
（適応策）
＞このような底層水質悪化に対する適応策としては，深層曝気施設や高濃度酸素水供給施設が有効と考えられる。

【濁度の上昇】

（気候変動による水質変化の予測）
＞ケーススタディダムのらち寒河江ダムにおいては，気候変動により，発生頻度は低いがダム への流入量規模の増大やダムの流出土砂の特性から，濁度の上昇が見られる。
（適応策）
＞このような出水に伴ら濁度の上昇に対する適応策としては，選択取水設備の効果は限定的と見られ，清水バイパスのような新規施設の検討も有効と考えられる。

【水温の上昇】

（気候変動による水質変化の予測）
＞ケースタディダムにおいては，気候変動により，気温上昇に伴って貯水池内水温が上昇する が，ダム流入水温も上昇するため，ダムの流入水温変動幅に対する現状の温水放流日数から の顕著な増加は見られない。ただし，耶馬溪ダム，早明浦ダムにおいては，選択取水設備の現状の運用ルールを継続した場合，若干の泠温水放流の増加が見られる。

（適応策）

＞このような泠温水放流の増加に対する適応策としては，選択取水設備の運用ルールを気候変動による流入水温の変動等に対して柔軟なものに変更することが有効と考えられる。

